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Abstract. We previously discovered microRNAs (miRNAs) in cerebrospinal fluid (CSF) that differentiate Alzheimer’s
disease (AD) patients from Controls. Here we examined the performance of 37 candidate AD miRNA biomarkers in a new
and independent cohort of CSF from 47 AD patients and 71 Controls on custom TaqMan® arrays. We employed a consensus
ranking approach to provide an overall priority score for each miRNA, then used multimarker models to assess the relative
contributions of the top-ranking miRNAs to differentiate AD from Controls. We assessed classification performance of the
top-ranking miRNAs when combined with apolipoprotein E4 (APOE4) genotype status or CSF amyloid-�42 (A�42):total tau
(T-tau) measures. We also assessed whether miRNAs that ranked higher as AD markers correlate with Mini-Mental State
Examination (MMSE) scores. We show that of 37 miRNAs brought forth from the discovery study, 26 miRNAs remained
viable as candidate biomarkers for AD in the validation study. We found that combinations of 6–7 miRNAs work better
to identify AD than subsets of fewer miRNAs. Of 26 miRNAs that contribute most to the multimarker models, 14 have
higher potential than the others to predict AD. Addition of these 14 miRNAs to APOE4 status or CSF A�42:T-tau measures
significantly improved classification performance for AD. We further show that individual miRNAs that ranked higher as
AD markers correlate more strongly with changes in MMSE scores. Our studies validate that a set of CSF miRNAs serve as
biomarkers for AD, and support their advancement toward development as biomarkers in the clinical setting.
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INTRODUCTION

Alzheimer’s disease (AD) is the most common
form of dementia and the sixth-leading cause of death
in the United States [1]. Total costs for health care,
long-term care, and hospice for people with AD and
other dementias were ∼$259 billion in 2017 [2].
There is tremendous effort by many investigators
to discover preventative therapies for AD, and to
develop biomarkers that identify presymptomatic or
preclinical cases of AD and monitor disease progres-
sion. Cerebrospinal fluid (CSF) serves as an excellent
biofluid for biomarker studies in neuropathologi-
cal diseases [3]. The most extensively studied CSF
biomarkers include amyloid-�42 (A�42), total tau
(T-tau), and phospho-tau, which are diagnostically
useful, but do not track progression in the context of
clinical trials [4]. However, the existence of extra-
cellular RNAs (exRNAs) in virtually all biofluids
has offered new potential for identifying diagnostic
and/or prognostic markers for multiple human dis-
eases [5].

ExRNAs have been described in the literature for
over 40 years. In 1978, Stroun et al. showed that
both DNA- and a pure RNA-nucleoprotein complex
were released by human and frog cultured cells, and
the exRNA release was an active mechanism that is
unrelated to cell death [6]. The authors commented
“whether exRNA is involved in intercellular transfer
of specific information or has only an unspecific stim-
ulating function cannot be answered at this stage”
[6]. A decade later Benner proposed that “RNA as
a short distance-short time messenger seems to be
a good match of chemistry and biological function”
[7]. Benner’s hypothesis arose from studies showing
biological effects on extracellular actions by certain
ribonuclease homologs, which “implied that the sub-
strate for extracellular RNases, exRNA, must play a
biological role in angiogenesis, neurological devel-
opment, and other biological processes” [7]. In 1999,
Kopreski et al. found tyrosinase mRNA in the serum
of patients with malignant melanoma, even after the
serum was filtered, indicating that the mRNA was
extracellular and that “exRNA in plasma from cancer
patients associates with or is protected in a multipar-
ticle complex” [8]. Thus, exRNAs have great promise
as biomarkers for diseases, including neurodegener-
ative diseases [9].

We previously reported that miRNAs in CSF from
living donors can serve as candidate biomarkers for
AD [10]. We identified a novel subset of 37 CSF
miRNAs that were able to distinguish AD patients

from Controls in a discovery cohort, based on n = 1
technical replicate/probe on the miRNA array. The
37 miRNAs include 20 that were verified by array
in our laboratory and 17 additional miRNAs that
were brought forth as candidate markers. The valida-
tion studies were performed using a custom TaqMan
Low Density qPCR array comprised of n = 3 technical
replicates/probe, in order to assess miRNA perfor-
mance in a new and independent cohort of CSF
donors. We generated miRNA profiles for all cohort
samples, then used rigorous statistical approaches
to rank the AD miRNA candidates. Our studies
validated that 26 of the 37 CSF miRNAs identi-
fied in the discovery studies can differentiate AD
patients from Controls, and combinations of miR-
NAs increases classification performance for AD.
We identified 14 of the 26 miRNAs as high-ranking
markers. We then examined classification perfor-
mance when the 14 miRNAs are added to current AD
markers, apolipoprotein E4 (APOE4) genotype sta-
tus and CSF A�42:T-tau measures. The validation of
these CSF miRNAs in a new and independent cohort
now advances their consideration for development as
biomarkers in the clinical setting, and for their use in
bioinformatic studies to identify potential novel gene
targets relevant to AD.

MATERIALS AND METHODS

Analytic pipeline

Figure 1 illustrates the analytic pipeline flow for
the AD miRNA biomarker validation studies. The
analytic pipeline included quality control processing
of the miRNA array qPCR data, followed by statis-
tical analysis of the miRNAs to evaluate their ability
to correctly identify AD CSF in miRNA multimarker
models, in combination with APOE4 genotype status,
and in combination with CSF A�42:T-tau measures.
Further, we evaluated how the miRNA markers
correlate with disease severity as represented by
Mini-Mental State Examination (MMSE) scores.

Participants

The CSF samples used for the validation studies
were obtained from the University of California, San
Diego (UCSD) Alzheimer’s Disease Research Center
(ADRC). All donor procedures were approved by the
UCSD Institutional Review Board (IRB 80012). All
participants provided written informed consent and
underwent detailed evaluations consisting of medical
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Fig. 1. Analytic pipeline for the AD miRNA biomarker validation
studies. The analytic pipeline included quality control process-
ing of the miRNA qPCR data, followed by statistical analysis of
the miRNAs. First, we aligned and normalized the data, and then
evaluated the classification performance of miRNA expression val-
ues in multimarker models, in combination with APOE4 genotype
status and CSF A�42:T-tau measures. Further, we examined the
correlation of MMSE with miRNA expression values by miRNA
rank.

history, physical and neurological examinations, lab-
oratory tests, and neuropsychological assessments.
Healthy Control subjects were recruited from the
community through public lectures, newsletters, and
word of mouth. Some participants were motivated
by a family or spouse history of dementia, but oth-
ers were simply motivated to contribute to research,
and we have previously reported that research lumbar
punctures are well tolerated and accepted even among
healthy adults [11]. Cognitive health of the healthy
volunteers was ascertained with MMSE [12] and clin-

ical interview, and the absence of neurologic disease
was confirmed by history and neurologic examina-
tion by a board-certified neurologist. The donors were
matched by age and sex, to the extent possible.

CSF collection

CSF was collected from donors using protocols
established by ADRCs. Lumbar punctures were done
in the morning under fasting conditions, in the lat-
eral decubitus position with a 24-gauge Sprotte spinal
needle. The first 2 mL of CSF collected was used
for clinical tests; samples with > 500 Red Blood
Cells/microliter were excluded from the study. Sub-
sequent 10–20 mL of CSF is collected from each
donor and gently mixed. The CSF samples were cen-
trifuged at 2000 g for 10 min at room temperature,
then aliquoted into polypropylene tubes that include
a subject number, but no other identifying informa-
tion. The CSF aliquots were flash frozen on dry ice
and stored at –80◦C.

APOE genotyping

APOE genotyping was performed at the UCSD
ADRC using PCR restriction fragment length poly-
morphism analysis, as described [13]. Genomic DNA
was extracted and amplified using forward primer:
5′-ACGCGGGCACGGCTGTCCAAGGA-3′; and
reverse primer: 5′-GCGGGCCCCGGCCTGGTAC
AC-3′. PCR products were Hha1 digested, ethidium
bromide stained, electrophoresed, and visualized by
UV illumination.

CSF Aβ42 and T-tau measures

Measurements of CSF A�42 and T-tau levels were
performed at the UCSD ADRC using enzyme-linked
immunosorbent assays (ELISAs) as previously
reported [14]. CSF A� 1−42 was measured using
the Euroimmun ELISA kit (EQ 6521-9601-L, ADx
Neurosciences, Ghent, Belgium). CSF T-tau was
measured using the ELISA kit (EQ 6531-9601-L,
ADx Neurosciences).

RNA isolation and qPCR

We instituted safeguards to improve quality control
of both the RNA isolations and the qPCR arrays based
on our AD miRNA discovery studies [10]. First, we
included a pooled CSF reference sample (RefStd) as
a constant throughout the entire period of the qPCR
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studies. The RefStd was comprised of CSF donated
from healthy community volunteers that was col-
lected, pooled, and stored in 0.5 mL aliquots, as per
the CSF collection protocol. RefStds were included
in batches of RNA isolations and run together with
patient CSF samples on the qPCR arrays to estimate
and eliminate variance across processing batches and
individual array cards. Cost considerations precluded
placement of a RefStd on every card, so 13 Ref-
Std samples were staggered at approximately even
intervals throughout the 66-card study. Second, we
included multiple miRNA controls on the arrays. Pos-
itive controls (miRNAs unchanged between AD and
Controls) were combined to form a complex normal-
izer, while negative controls (miRNAs not found in
CSF) were used to check the validity of each array
card. In our initial AD discovery studies, we used only
U6 small nuclear RNA (U6 snRNA) as a normalizer
for the qPCR arrays [10]. For the validation studies
presented here, each custom array card contained 51
RNA probes: 37 candidate AD miRNA biomarkers,
9 positive miRNA controls, U6 snRNA, and 4 miR-
NAs not detected in CSF (Supplementary Table 1A)
at n = 3 technical replicates/miRNA probe in order
to add robustness to this study. Third, we imposed
strict uniformity over the reagent manufacturing lots:
all kit and reagent lots were matched, with only two
exceptions: one change in a lot of RNA Clean & Con-
centrator kitTM-5 (R1016, Zymo Research, Irvine,
CA), and one change in a lot of Reverse Transcriptase
enzyme.

Total RNA was extracted from 0.5 mL of
CSF using the mirVana™ PARIS™ Kit (AM1556,
(Thermo Fisher Scientific, Waltham, MA) as
described [10]. The RNA samples were concentrated
using RNA Clean & Concentrator kitTM-5 (R1016,
Zymo Research). The concentrated RNA samples
were reverse transcribed using a custom MiRNA
RT pool (4459652, Thermo Fisher Scientific) and
TaqMan® MicroRNA Reverse Transcription Kit
(4366596, Thermo Fisher Scientific), then pre-
amplified using a custom MiRNA PreAmp pool
(4459660, Thermo Fisher Scientific) and TaqMan®

PreAmp Master Mix w/QRC (4391128, Thermo
Fisher Scientific). The pre-amplification products
were diluted 1:4 in RNase/DNase-free water, then
18 �L of diluted samples were mixed with TaqMan®

Universal PCR Master Mix II, no UNG (4440040,
Thermo Fisher Scientific) and RNase/DNase-free
water to a final volume of 450 �L, loaded onto a cus-
tom TaqMan® Array Card (4449140, Thermo Fisher
Scientific) and amplified on a QuantStudio™ 12K

Flex Real-Time PCR instrument (4471089, Thermo
Fisher Scientific) using QuantStudio™ 12K Flex
Software v1.2.2 (Thermo Fisher Scientific).

Preprocessing of Ct values

The miRNA amplification data was then subjected
to quality control filtering of the Ct values using
ExpressionSuite Software v.1.0.3 (Thermo Fisher
Scientific). All further processing and statistical
analyses were conducted using Stata version 15.1
(StataCorp LLC, College Station, Texas) and R ver-
sion 3.4.1 (R Foundation for Statistical Computing;
http://www.r-project.org) software tools. We imple-
mented biomarker acceptability rules to enable go or
no-go decisions for each candidate miRNA before
assessing its predictive performance in samples. First,
we excluded miRNAs that did not amplify in at least
20% of the samples to ensure that candidates had at
least some biomarker potential. The 20% cutoff was
chosen because 80% censoring with a 1:1 case:control
ratio means specificity can never exceed 40%, even
with perfect sensitivity. We believed this would be a
lower bound of usefulness for a potential biomarker.
Second, 2 of the 3 technical replicates/miRNA probe
included on the array needed to successfully amplify
in the sample. Third, the data was filtered to ensure
good quality detection and to avoid false positives.
Thus, we included amplifications with median Ct
values < 34, a cutoff chosen based on high repli-
cate standard deviations for Cts > 34. Further, the
amplifications had to have an AmpScore ≥ 1.0 and a
CqConf ≥ 0.9. The AmpScore indicates, for a given
well, the rate of amplification in the linear region of
the response curve. The CqConf indicates the calcu-
lated confidence (between 0 and 1) for the Cq/Ct value
of the well. Thus, miRNAs that met these quality con-
trol standards were considered for further analysis.
We also required at least 90% attestation (the frac-
tion of samples that show evidence of expression for a
given miRNA via their Ct values) across the positive
control miRNAs since these were used for normal-
ization. Under these rules, we retained 7 of the 10
positive controls, and 26 of the 37 possible miRNA
biomarker candidates (Fig. 1 and Table 2) identified
in the discovery study for further analysis in this val-
idation study. All of the miRNA qPCR array data
and donor-specific metadata have been reposited in
the exRNA Atlas [15] dataset Validation Study for
Candidate AD miRNA Biomarkers in Human CSF,
#EXR-JSAUG1UH3001-ST that can be accessed via
the Datasets link at http://exrna-atlas.org/.

http://www.r-project.org
http://exrna-atlas.org/
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Batch correction and normalization

Since the CSF samples were measured over the
course of many weeks, variation in ambient tem-
perature, machine calibration, and other minor, but
uncontrolled and imperceptible factors may arise.
Thus, there is a need to ensure that card-to-card batch
variations are removed prior to analysis. To accom-
plish this, within each card, the Ct values for a sample
were taken as the median of the miRNA values in
the triplicate wells (n = 3 technical replicates/miRNA
probe); miRNAs with median value of 34 or larger
were censored at 34, which means that any miRNA
with a Ct > 34 was considered to have expression too
low for reliable detection in the assay. These miRNAs
were included in the analysis with an assigned expres-
sion value of zero. The median Ct values were then
corrected for day-to-day variance in technical pro-
cessing. Positive controls for the RefStds were treated
as anchors and used to align the array cards. With 13
RefStd samples included over the processing of 66
array cards, and not appearing on every array card, we
had to interpolate batch corrections for cards that did
not include a RefStd. These plausible card corrections
were made by averaging predictions from 5 models
of batch differences: 1) the median of all probes; 2)
the mean of all positive control probes; 3) the mean
and variance of the distribution of all probes; 4) a lin-
ear trend to connect one RefStd anchor to the next
in run-order sequence; and 5) a card median repre-
senting a random deflection from the sample mean of
all card medians. We then averaged these prediction
values to align Ct values across all 66 cards.

Following batch correction, there is a need to
normalize the Ct values by the overall miRNA con-
tent of the sample, in order to ensure comparability
of expression measurements. The aligned Ct values
were normalized relative to the mean of 7 “non-
changing” positive controls included on the arrays:
6 miRNAs (miR-1290, -204-5p, -30e-3p, -574-3p,
-638, -92a-3p), plus U6 snRNA (Supplementary
Table 1). The normalization was done by calculat-
ing a CSF sample-specific Ct value offset from a
grand mean (i.e., the “subject effect”) using a crossed
random effects mixed model [16], and then subtract-
ing this offset from the measured Ct values for the
sample. Similar to our discovery studies, we then
transformed the normalized Ct values onto an expres-
sion scale so that higher values indicate relatively
greater quantities of miRNA expression (the transfor-
mation is expression = Ctnormmax – Ctnorm, where
Ctnormmax is the largest non-censored normalized

Ct value in the data, rounded up to the nearest inte-
ger). Censored Ct values were assigned a value of
zero on this expression scale and included in the final
analysis [10].

Biomarker relevance

We assessed the global relevance of the biomarker
candidates by computing the multivariate distance
between observations using Mahalanobis distance.
Mahalanobis distance is a way of measuring the sep-
aration between a data point and the center of a group
of data points with respect to many variables, while
accounting for their mutual correlations [17]. Thus,
samples similar in overall expression lie as close
points in the space defined by the 26 miRNA values,
while samples dissimilar in expression are widely
separated in this space. We calculated the distances of
each of the AD and Control samples from the center
of the Controls using the covariance of the Controls as
the scale in order to measure each sample’s similarity
to a typical Control sample. This same approach was
used to verify appropriateness of the positive control
miRNAs as normalizers.

Biomarker importance ranking

The decision that a biomarker is important should
be robust, so for greater assurance it is essential to
judge their importance in many different ways. To
assess each candidate miRNA as an AD biomarker,
we examined: 1) the association between miRNA
expression and AD status; 2) clear separation of
miRNA expression between the AD and Control
CSF; and 3) complementarity of information when
combined with other AD markers. Importantly, (1)
and (2) are complementary information about an indi-
vidual marker, and (3) evaluates miRNA value as
members of larger biomarker groups that may provide
synergistic information regarding the disease state.
Biomarker importance was assessed by 1) log-rank
tests [18] to account for censoring, 2) receiver operat-
ing characteristic (ROC) curves [19], and 3) variable
importance in random-forest classifiers using 4 dif-
ferent decision-tree generation rules (CART [20],
CFOREST [21], CHAID [22], BOOST [23]) to miti-
gate bias in the importance estimate due to a particular
decision rule.

Prioritization of AD miRNA biomarkers

We designed our analytical approach to elicit
consensus across statistical methods and prioritize



880 J. Wiedrick et al. / Validation of CSF MicroRNA Biomarkers for AD

candidate miRNAs as potential AD biomarkers. Each
testing procedure generated a ranking of the 26 vali-
dated miRNAs: different “judging” methods sorted
the candidates from best (1) to worst (26). More-
over, we incorporated information from our discovery
study in order to give due weight to our prior knowl-
edge that certain candidates were likely to fare better
than others in validation testing. We did this by rank-
ing the complete set of candidates prior to doing any
testing in the validation cohort, and we included this
prior ranking as a separate judge. Each judge inde-
pendently ranks the miRNA markers, and then the
ranks for each miRNA marker are summed. This rank
sum reflects our statistical consensus opinion of a
miRNA marker’s value. Significance of differences
in rank sum were assessed via permutation testing of
the Skillings-Mack statistic [24].

Multimarker classification performance

Although ranking and prioritization of individual
miRNAs is an important first step in understand-
ing how the miRNAs may relate to AD status and
progression, our ultimate goal is to develop an AD
classifier using the best available miRNA informa-
tion. To be useful this classifier needs to incorporate
several different miRNAs into a “multimarker” model
because no single miRNA contains enough informa-
tion about AD to enable reliable prediction. Thus,
assessing which miRNAs work well together and in
what combinations is of key importance. Multimarker
classification performance was assessed by evaluat-
ing linear combinations of all possible 1-, 2-, 3-,
and 4-marker subsets of the 26 validated miRNAs.
We also carefully examined selected combinations
of 5-, 6-, and 7-markers based on performance in
smaller sized subsets and/or rank sum. To bench-
mark classification performance, we used a stepwise
Bayesian model-averaging [23] procedure on the full
set of 26 markers and selected 9 markers demon-
strating robust contribution to all of the multimarker
models. The model-averaged area under the ROC
curve (AUC) of this 9-marker set (0.716) was used
as a benchmark that any proposed model must beat.
The subsets described above yielded 76,867 unique
models, whose classification (AUC) and model fit
(Akaike information criterion [AIC]) were calcu-
lated using logistic regression. We plotted AIC versus
AUC, denoting number of markers per model, and
then superimposed a nonlinear regression of AUC
on AIC onto this plot to select top-performing com-
binations in terms of classification, calibration, and

parsimony. The combinations with highest AUC and
lowest AIC that rose above the benchmark were
selected. The individual contribution to the set of
93 top-performing models (which equated to the top
0.12% of the 76,867 models tested) was assessed for
each miRNA by calculating the fraction of these mod-
els that the miRNA was included in, and the size of
the miRNA’s model-averaged coefficient.

Performance of AD miRNAs plus APOE4
genotype or CSF Aβ42:T-tau measures

Performance of the AD miRNA biomarkers was
compared to the performance of the APOE4 geno-
type status and to the performance CSF A�42:T-tau
measurements in the validation cohort. Donors who
were missing APOE4 genotype data (n = 5 Control,
n = 2 AD) or A�42:T-tau measures (n = 4 Control,
n = 1 AD) were not included in this analysis so that
all models could be directly comparable on the same
donor cohort (n = 60 Control, n = 41 AD). We com-
pared miRNA classification performance alone to
miRNA performance after combining APOE4 geno-
type or A�42:T-tau ratios with the miRNAs. We
formed a k-nearest-neighbor classifier (k = 3) so that
all of the miRNA information would be used without
imposing any assumptions about either the relation-
ships among the miRNAs or how they contribute to
AD classification. The k-nearest-neighbor classifier
(k = 3) was based on Canberra distance [25] between
Mahalanobis-scaled miRNA expression values, set-
ting prior probabilities proportional to the AD and
Control group sizes and breaking ties randomly.

Correlation of MMSE with higher-ranked miRNAs

We examined whether the correlation between
MMSE scores and individual miRNA expression lev-
els would be larger for miRNAs that ranked higher as
AD markers. Correlation with MMSE was measured
as the partial R2 statistic from a linear regression
of the individual miRNA expression on the MMSE
score, adjusting for age and sex. The partial R2 values
were then compared to miRNA ranks using Spearman
correlation.

RESULTS

Donor characteristics

The characteristics for the 71 Controls and 47
AD CSF donors evaluated in this validation study
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are shown in Table 1. The donors were matched by
sex to the extent possible, but there was a some-
what higher percentage of females in the Control
group (24 males:47 females; 33.8% males:66.2%
females) compared to the AD patients (26 males:21
females; 55.3% males:44.7% females). The donors
were matched by age: mean age of healthy Controls
was 72.72 ± 5.91, mean age of the AD patients was
73.13 ± 9.22. Controls were in good health with a
mean MMSE score of 29.13 ± 1.31, Clinical Demen-
tia Rating (CDR) [26, 27] scores of 0, and no evidence
or history of cognitive or functional decline. AD
patients were diagnosed with probable AD according
to the National Institute of Neurological Disorders
and Stroke–Alzheimer’s Disease and Related Disor-
ders Association (NINDS-ADRDA) criteria [28, 29],
with a mean MMSE score of 22.06 ± 3.47, and CDR
scores of 1–2. Of note, the mean MMSE of the AD
patients in the validation study (22.06 ± 3.47) was 4
points higher than the mean MMSE in the discovery
study (18.28 ± 6.4) [10], indicating that the validation
cohort reported here had milder dementia than the

previously reported discovery cohort. APOE geno-
typing was available for 111/118 donors (66 Controls
and 45 AD): the Control group had 62.12% with 0,
30.30% with 1, and 7.58% with 2 APOE4 alleles,
while the AD group had 35.56% with 0, 42.22% with
1, and 22.22% with 2 APOE4 alleles. As expected,
APOE4 genotype was over-represented in the AD
group [30]. Most donors in the 0 or 1 category of
the APOE4 alleles had an APOE3 genotype, while
only three donors had an APOE 2,4 genotype (2 nor-
mal control males, 1 AD male). CSF A�42 and T-tau
measures were available for 106 of the 118 donors (64
Controls and 42 AD). The ratio of A�42:T-tau in the
Control group is 1.5 ± 0.8, while the AD group had a
ratio of 0.6 ± 0.5. Thus, as expected, the A�42:T-tau
ratio decreased in the AD group [31].

Measures for validated AD miRNAs

Table 2 lists the 37 candidate AD miRNA biomark-
ers tested in this validation study, and shows the
quantitative and statistical measures of the 26 miR-

Table 1
Donor characteristics. The table includes the number, sex, age, and MMSE for the 118 Control
and AD patients evaluated in this validation study. APOE4 genotype status was available for 111
of the CSF donors, while A�42 and T-Tau measures was available for 106 of the CSF donors

evaluated in the study

CONTROL AD All
SEX

Male 24 (33.8%) 26 (55.3%) 50 (42.4%)
Female 47 (66.2%) 21 (44.7%) 68 (57.6%)
Total 71 47 118

AGE* Mean ± SD Mean ± SD Mean ± SD

Male 74.75 ± 6.24 72.65 ± 8.67 73.66 ± 7.60
Female 71.68 ± 5.52 73.71 ± 10.05 72.31 ± 7.21
Total 72.72 ± 5.91 73.13 ± 9.22 72.88 ± 7.37

MMSE* Mean ± SD Mean ± SD Difference ± SDboot
†

Male 28.88 ± 1.62 22.88 ± 3.37 –5.99 ± 3.68
Female 29.26 ± 1.11 21.05 ± 3.38 –8.22 ± 3.48
Total 29.13 ± 1.31 22.06 ± 3.47 –7.06 ± 3.67

APOE4 ALLELES Count % Count % Count %

0 41 62.12 16 35.56 57 51.35
1 20 30.30 19 42.22 39 35.14
2 5 7.58 10 22.22 15 13.51
Total∧ 66 100.00 45 100.00 111 100.00

A�42:TAU Mean ± SD Mean ± SD Difference ± SDboot
†

A�42 479.0 ± 210.1 305.5 ± 154.8 –173.5 ± 258.1
T-tau 392.2 ± 201.1 689.4 ± 335.1 297.3 ± 385.7
A�42:T-tau 1.5 ± 0.8 0.6 ± 0.5 –0.9 ± 0.9
mean(A�42):mean(T-tau) 1.22 ± 0.10 0.44 ± 0.05 –0.78 ± 0.11
Total# 64 42 106

*Age and MMSE values represent data at the time of CSF collection. †SDboot, standard deviation of
differences between randomly selected AD and CONTROL individuals based on 100,000 bootstrap samples.
∧For available donor samples; genotyping data for n = 5 Control and n = 2 AD were not available. #For
available donor samples; A�42 and T-tau measures for n = 7 Control and n = 5 AD were not available.
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Table 2
Quantitative and statistical measures of the 37 candidate AD miRNA biomarkers tested in the validation study. The list shows the MIMAT
accession number for each miRNA. The 26 miRNAs that remained viable as candidate AD biomarkers are indicated by “Yes” in the ‘Viable’
column. The ‘Rank’ columns indicate the judges used to rank-sort the miRNAs, and include the ranking of each miRNA in the discovery
(Disc) study. Two judges (LogRank, ROC) assessed performance of individual miRNA markers, while the remainder assessed classification
performance of miRNAs in combination. The % of miRNAs detected in each diagnostic group and the fold change for each miRNA are

also listed

MIMAT miRBase Viable Rank % Detected Fold Change
Name Disc Log-Rank ROC CART CFOREST CHAID BOOST Control AD Log2 95% CI

p-value AUC

0000423 miR-125b-5p Yes 9.5 0.89 0.52 13 22 4 13 69 68 1.17 (0.81,1.67)
0005881 miR-1291 No
0000431 miR-140-5p Yes 14 0.18 0.57 15 10 21 14 36 23 1.17 (0.89,1.54)
0000434 miR-142-3p Yes 1 0.93 0.50 22 23 7 18 81 81 1.02 (0.72,1.44)
0000435 miR-143-3p Yes 7 0.80 0.55 20 13 8 20 36 32 1.20 (0.96,1.50)
0004601 miR-145-3p No
0000437 miR-145-5p Yes 17 0.72 0.51 16 24 23 16 71 74 1.10 (0.84,1.43)
0000449 miR-146a-5p Yes 14 0.24 0.56 10 12 9 6 84 94 0.86 (0.60,1.24)
0002809 miR-146b-5p Yes 17 0.83 0.57 11 19 18 17 79 72 1.27 (0.91,1.79)
0000417 miR-15b-5p Yes 21 0.30 0.55 7 9 24 7 31 23 0.96 (0.76,1.22)
0000069 miR-16-5p Yes 11.5 0.53 0.52 24 26 25 19 84 89 0.96 (0.61,1.51)
0004614 miR-193a-5p Yes 4 0.22 0.62 4 2 3 3 71 74 1.39 (1.03,1.87)
0000461 miR-195-5p Yes 20 0.78 0.53 12 14 17 25 31 32 1.06 (0.83,1.36)
0000074 miR-19b-3p Yes 3 0.12 0.59 3 7 12 8 93 96 1.23 (0.86,1.77)
0002811 miR-202-3p No
0000280 miR-223-3p Yes 19 0.06 0.55 17 8 5 4 99 100 1.15 (0.90,1.48)
0000080 miR-24-3p Yes 8 1.00 0.53 25 20 19 24 83 81 1.06 (0.75,1.49)
0000083 miR-26b-5p No
0000419 miR-27b-3p No
0004502 miR-28-3p Yes 17 0.58 0.52 14 17 10 9 39 43 1.21 (0.98,1.51)
0000086 miR-29a-3p Yes 11.5 0.91 0.50 8 21 13 22 43 43 1.15 (0.86,1.56)
0000088 miR-30a-3p Yes 9.5 0.55 0.55 21 11 11 10 50 53 1.28 (0.96,1.70)
0000245 miR-30d-5p No
0000752 miR-328-3p Yes 14 0.72 0.55 26 25 15 11 60 66 0.95 (0.69,1.32)
0000760 miR-331-3p Yes 22 0.71 0.53 18 15 22 26 23 19 1.20 (0.93,1.54)
0004692 miR-340-5p No
0000710 miR-365a-3p Yes 24.5 0.69 0.56 23 16 26 21 56 55 0.90 (0.69,1.16)
0003379 miR-378a-3p* Yes 5 0.11 0.57 2 5 14 5 67 81 0.97 (0.68,1.37)
0000732 miR-378a-3p** Yes 6 0.31 0.58 9 6 16 15 87 89 1.31 (0.97,1.79)
0002174 miR-484 Yes 24.5 0.16 0.60 6 3 6 12 89 91 1.21 (0.89,1.64)
0002837 miR-519b-3p No
0002843 miR-520b-3p No
0002888 miR-532-5p Yes 24.5 0.85 0.54 19 18 20 23 26 28 1.13 (0.89,1.43)
0003249 miR-584-5p Yes 24.5 0.22 0.59 1 1 2 2 77 83 1.23 (0.93,1.64)
0003258 miR-590-5p No
0003265 miR-597-5p Yes 2 0.56 0.62 5 4 1 1 97 94 1.45 (0.98,2.15)
0003271 miR-603 No

*Probe designed to nt 1-21 of miR-378a-3p, **Probe designed to nt 1-22 of miR-378a-3p.

NAs that remained viable as candidate biomarkers
under our acceptability rules (Methods), as indicated
by “Yes” in the ‘Viable’ column. Our analytic strate-
gies focused on assessing these 26 viable miRNAs in
multimarker combinations, and we demonstrate that
these miRNAs work together very well to differenti-
ate AD from Controls. First, we determined how well
all 26 miRNAs can jointly separate/classify AD from
Control samples. Figure 2A plots the Mahalanobis
distances of AD and Control samples, showing how
far each is from the center of the Controls in the
miRNA expression space. The individual Control

samples (gray points) fall mostly at small distances
from the center (bottom of plot), while the AD sam-
ples (black points) fall mostly at large distances
(higher up the plot). Few Control samples are above
the 80th percentile (dashed) line, and few AD sam-
ples are below it. Using the Mahalanobis distance
as a classification index we attain AUC of 0.84, a
value that serves as an estimate of the maximum per-
formance of the 26 viable miRNAs in this cohort.
In contrast, the classification potential of the posi-
tive control miRNAs in this cohort (Fig. 2B) shows
that Control (gray) and AD (black) samples are inter-
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Fig. 2. A) Overall classification potential of biomarker candidate miRNAs. Mahalanobis distances of AD and non-AD (Control) samples
from the center of the Controls in the miRNA expression space show that the Control (gray) points fall mostly at small distances from the
center (bottom of the plot area), while the AD (black) points fall mostly at large distances (higher up in the plot). Using the distances to
classify samples gives an AUC of 0.84. B) Overall classification potential of positive control miRNAs. Mahalanobis distances calculated
from the center of the Control group with respect to the positive control miRNAs show that the Control (gray) and AD (black) samples are
randomly intermixed, and samples at larger distances come from both groups. Using these distances to classify samples gives an AUC of
only 0.54. For the Mahalanobis distance calculations, we imputed values > 34 Ct for censored observations using predictions from a tobit
regression model [47] in order to jitter the censored values appropriately. %ile, percentile.

Fig. 3. Rank plot of the 26 validated AD miRNA biomarkers. The plot shows the ranks and rank sums of each of the 26 miRNAs according
to seven independent “judges”: six statistical assessment criteria, plus the rank of the miRNA in the prior discovery study [10]. The ranks
of the individual table cells are color-coded along a red-blue color ramp to visually assess consistency of rankings and to identify higher
ranking “hot” (red) and lower ranking “cool” (blue) miRNA candidates.

mixed, and samples at larger distances come from
both groups. The 99.9th percentile (dashed) line con-
tains nearly all samples and the AUC for the positive
control miRNAs is 0.54. This highlights the over-
all informativeness of the 26 miRNA candidates as
AD biomarkers, as compared to steady-state positive
control miRNAs.

Rankings of validated miRNAs

We used seven independent “judges”, or statisti-
cal assessment criteria (described in Materials and
Methods) to characterize how well each of the 26

miRNAs work alone or in combinations to correctly
identify a CSF sample as AD or Control. Figure 3
shows the ranks and rank sums of each of the 26
miRNAs according to these statistical assessments,
including the ranking based on prioritization in the
discovery study [10]. Higher ranks are indicated by
smaller numbers, so that more highly ranked mark-
ers across all criteria have lower rank sums. Two of
the criteria (LogRank, ROC) assessed performance
of individual markers, while the remainder assessed
classification performance of miRNAs in combina-
tion. As shown via color-coding (red), miR-193a-5p,
-597-5p, -195-5p, and -378a-3p performed best and
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were also among the top discovery study perform-
ers. In contrast, miR-484 and -584-5p were lower in
the discovery prioritization, but performed well here.
However, our top discovery study performer, miR-
142-3p, did not perform well here. The latter two
outcomes may reflect the difference in the average
MMSE score between the discovery and validation
cohorts (4 points lower in the discovery cohort). For
example, miR-142-3p may preferentially signal later-
stage AD and be an indicator of disease progression.

MiRNA combinations increase classification
performance

Most biomarkers reveal complementary informa-
tion, and even modest miRNA combinations showed
greatly improved classification accuracy for AD com-
pared to single miRNAs in our discovery study [10].
As the best miRNA-based classifiers will necessarily
be multimarker combinations, we fit 76,867 multi-
marker models (described above), and selected 93
top-performing models for pairing good predictive
power (high AUC) with good calibration (low AIC).
Figure 4 presents the ROC curves for all 93 top
models, color-coded by size of the model. Averages
of ROC curves within each color are presented in
bold. Combinations consisting of 7 miRNAs (mean
AUC = 0.796) are incrementally better at identifying
AD samples than combinations that consist of fewer
miRNAs. Further, examples that contain as few as
4 miRNAs attain a mean AUC > 0.72, the value we
predicted in our prior study [10]. Some combina-
tions of 6 and 7 miRNAs attain AUCs exceeding
0.80 (faint blue and orange lines). Recalling that
the classifier based on Mahalanobis distance in the
complete 26-marker space showed an AUC of 0.84
(Fig. 1A), we note that models comprising as few as
one-fourth of the markers approach that performance
level. These values far exceed the best perform-
ing individual miRNAs, underscoring the need for
a multimarker-based approach to AD prediction
using miRNAs.

Top contributors to miRNA-based AD classifiers

After we identified the top-performing multi-
marker models, we next sought to determine which of
the 26 miRNAs contribute the most to performance
in these models. In Fig. 5, we plotted the percent
contribution to the top 93 multimarker models (from
Fig. 4) against the consensus rank of each of the
26 validated miRNAs in the screening assessments

Fig. 4. Classification accuracy for miRNA combinations. The plot
depicts the average receiver operating characteristics (ROC) for the
93 best multimarker models of the validated miRNAs. The faint
lines are the individual ROC curves for the top-multimarker models
(color coded based on the number of miRNAs that contributed
to the model). Bold solid lines are the empirical averages of the
individual ROC curves. Dashed curves are binormal estimates of
the average. The mean area under the curve (AUC) for the averaged
ROC curves are presented. Note that some of the individual ROC
curves generated from 6 miRNAs (faint orange lines) or 7 miRNAs
(faint blue lines) have AUCs that exceed 0.80.

(shown in Fig. 3). Marker size is proportional to
the magnitude of the model-averaged coefficient esti-
mate from the Bayesian model-averaging procedure
(Materials and Methods, Multimarker classification
performance). The highest-ranked miRNAs markers
tend to be, but are not always, the most impor-
tant contributors to the multimarker models. Our
exhaustive assessment of classification performance
revealed that 14 of the 26 AD biomarker candidates
contributed strongly and in a mutually complemen-
tary and additive manner to AD prediction across a
broad range of model scenarios. These top 14 con-
tributors to miRNA-based classifiers are listed in
Table 4.

APOE4 status improves miRNA classification
performance

The APOE4 allele is a risk-factor gene as it
increases a person’s risk of developing AD; how-
ever, having an APOE4 allele does not guarantee that
one will develop AD. Thus, many researchers believe
that APOE testing is useful for studying AD in large
groups, but not for determining an individual’s risk
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Fig. 5. MiRNA percent contribution to the top multimarker models against the consensus rank. The figure shows how our statistical consensus
ranking relates to marker contribution in multimarker models. For each of the 26 miRNAs the percent contribution to a multimarker model is
plotted against the consensus rank in the screening assessments. Contribution percentage is based on presence in the top 0.12% (93/76867)
of multimarker models. Marker size is proportional to the magnitude of the marker’s model-averaged coefficient estimate.

for AD. That said, given the known strong association
between APOE genotype and AD risk, we exam-
ined whether the genotype status was redundant with
the miRNA expression values, or whether it could
add power to a general miRNA-based classifier. We
found that addition of APOE4 genotype status to the
best 14 miRNAs (Table 4) increased the classification
performance of the nearest-neighbor AD classifier,
particularly in the high-specificity range (Fig. 6). The
AUC for the best 14 miRNAs independent of APOE4
is 0.820, but when APOE4 was added the AUC
increased to 0.856, a 4 point increase similar to that
observed for parsimonious models in our discovery
study [10]. It is worth noting that the AUC for APOE4
only is 0.637 in this cohort, which is lower than the
reported APOE4 performance (∼0.67 [32]) and con-
siderably lower than performance in our discovery
cohort (0.73). This is indicative of potential latent
AD cases among the current cohort Controls. Yet
even in this low-powered setting, adding APOE4 to
the classifier yielded the same level of improvement,
suggesting that the miRNA expression phenotypes
are not simply reflecting genetic risk; they also pro-
vide independent power to differentiate AD from
Controls.

Fig. 6. APOE4 plus miRNAs improves classification performance
over the best-possible miRNAs-only model. The plot depicts the
receiver operating characteristics (ROC) curves for a multimarker
model that includes the best miRNAs (dashed line), APOE4 only
(dark gray line), and all 14 miRNAs plus APOE4 (solid line). The
area under the curve (AUC) for the best 14 miRNAs increases
from 0.820 without APOE4 to 0.856 with APOE4 (�AUC=0.04).
The AUC estimates are based on k-nearest-neighbor nonparametric
classifiers that incorporate information from the top 14 miRNAs
found to contribute to the best multimarker models (Table 4).
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Aβ42:T-tau improves miRNA classification
performance

The CSF markers A�42 and tau (total and phos-
pho) reflect AD pathology, and have high accuracy
to diagnose AD with dementia and prodromal AD
in mild cognitive impairment cases [33]. Therefore,
we examined the performance of A�42 and T-tau,
alone and in combination with the miRNA biomark-
ers. Table 3 shows the diagnostic performance of
CSF A�42 and T-tau for 106 donors with available
data, as well as the odds ratio for APOE4 posi-
tive status given a 1-standard-deviation change in
the CSF marker (in the direction of higher proba-
bility of AD) for the donors where both the A�42
and T-tau measures, and APOE4 genotype status,
were known. As expected [31], we found that both
A�42 and T-tau are good AD predictors of AD
(AUC = 0.78, on par with any of the miRNA mod-
els), but the A�42:T-tau ratio is dramatically better
than either marker alone (AUC = 0.86) (Table 3).
We assessed the AUC of a full-information classi-
fier using the top-contributing 14 miRNAs (Table 4),

which increased from 0.820 without A�42:T-tau
to 0.903 with A�42:T-tau (�AUC=0.08) (Fig. 7).
Together, these data show that similar to the APOE4
results, the miRNA information is not redundant with
the A�42:T-tau ratio, but that it provides independent
power to differentiate AD from Controls. This find-
ing importantly reveals that CSF protein and miRNA
measures provide complementary information about
AD status.

CSF miRNAs and AD severity

Given that this validation cohort had diminished
severity of dementia and somewhat reduced classifi-
cation performance of the miRNA panel compared
to the discovery cohort, we evaluated how the
miRNA markers correlate with disease severity as
represented by the MMSE scores (Table 1). We
found that the association (as measured by partial
R2) between MMSE scores and miRNA expres-
sion became stronger in higher-ranked miRNAs. For
example, our higher-ranked miRNAs, such as miR-
193a-5p, have expression levels that correlate more

Table 3
CSF Ab42 and T-tau measures. The table lists the diagnostic performance of CSF A�42 and T-tau for the 106 donors with available measures.
The table also lists the odds ratio for APOE4 positive status given a 1-standard-deviation change in the CSF marker (in the direction of
higher probability of AD) for the 101 donors where both the A�42:T-tau and the APOE4 genotype status were known. (Odds ratios were
calculated as the exponentiated coefficient from a logistic regression of APOE4 genotype status on the standardized values of the marker)

Marker AUC* Best Cutoff Sensitivity Specificity SD� odds ratio for APOE4*

A�42 0.782 <360 78.6% 64.1% 1.62
T-tau 0.782 >836 73.8% 73.4% 3.97
A�42:T-tau 0.861 <0.83 81.0% 79.7% 2.81

*For reduced cohort not missing APOE genotyping: 60 Control and 41 AD.

Table 4
MiRNAs that contributed strongly and in a mutually complementary and additive manner to AD prediction based on multimarker modeling,

sorted based on their percent (%) contribution to multimarker models

MIMAT miRBase Name % Contribution Model- Bayesian Overall Rank
Name to Multimarker Models Averaged Logit Posterior Model Inclusion in Screening

Models Coefficient Probability Assessments

0000417 miR-15b-5p 97.8 –0.14 0.59 12
0000760 miR-331-3p 75.3 –0.01 0.26 24
0000074 miR-19b-3p 64.5 0.07 0.42 3
0003249 miR-584-5p 62.4 0.08 0.46 5
0000449 miR-146a-5p 49.5 0.05 0.39 9
0003265 miR-597-5p 48.4 0.03 0.28 2
0000088 miR-30a-3p 46.2 0.06 0.44 10
0003379 miR-378a-3p* 45.2 0.08 0.56 4
0000710 miR-365a-3p 32.3 –0.03 0.33 21
0002174 miR-484 22.6 0.02 0.29 6
0004614 miR-193a-5p 14.0 0.03 0.34 1
0000431 miR-140-5p 12.9 –0.04 0.36 11
0002809 miR-146b-5p 9.7 –0.01 0.27 16
0000280 miR-223-3p 9.7 0.18 0.45 8
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Fig. 7. A�42:T-tau plus miRNAs dramatically improves classifi-
cation performance over the best-possible miRNAs-only model.
The plot depicts the receiver operating characteristics (ROC)
curves for a multimarker model that includes the “best” (i.e., top-
contributing) 14 miRNAs (dashed line), A�42:T-tau only (dark
gray line), and the best 14 miRNAs plus A�42:T-tau (solid line).
Area under the curve (AUC) increases from 0.820 for the miR-
NAs without A�42:T-tau to 0.903 with A�42:T-tau (�AUC = 0.08).
The AUC estimates are based on k-nearest-neighbor nonparamet-
ric classifiers that incorporate information from the top 14 miRNAs
found to contribute to the best multimarker models (Table 4).

strongly with MMSE scores than our lower-ranked
miRNAs, such as miR-331-3p, which tend to show
only weak correlation with MMSE at best. As shown
in Fig. 8, in general, the association between MMSE
score and miRNA expression levels is increasingly
strengthened by an improvement in rank order, sug-
gesting that these miRNAs may also be able to signal
disease progression in AD patients.

DISCUSSION

We previously discovered that CSF miRNAs can
differentiate AD from Controls and potentially serve
as new biomarkers for AD [10]. Here we report results
of validation studies performed on 37 miRNAs iden-
tified in the discovery study, based on n = 1 technical
replicate/probe on the miRNA array. For the valida-
tion studies we assessed 37 miRNAs; 20 that were
verified by array in our laboratory, 17 additional
that were brought forth as candidate markers. The
validation studies were performed using a custom
array comprised of n = 3 technical replicates/probe
on the miRNA array, in order to assess miRNA per-

formance in a new and independent cohort of CSF
donors. Our studies validate that 26 of the previously
identified CSF miRNAs continue to differentiate
AD patients from Controls. Further, combinations
of miRNAs increases classification performance for
AD. Based on our multimarker modeling we iden-
tified 14 miRNAs that contributed strongly and in a
mutually complementary and additive manner to AD
prediction (Table 4). In addition, we confirm that a
combination of new (miRNA) and existing (APOE4,
A�42:T-tau) markers increased classification perfor-
mance, as we previously observed for APOE4 in our
discovery study [10]. In line with our results, hsa-
let-7b has been shown to work in combination with
either A�40 and A�42, or T-tau and p-tau, to increase
the AUC relative to the independent markers [34].
These findings strongly support that CSF miRNAs
are not redundant with APOE4 and A�42:T-tau, but
instead offer additional diagnostic information. We
also demonstrate that our highest-ranked AD miR-
NAs correlate with MMSE scores in AD, which
suggests these miRNAs have the potential to track
disease progression and consequently be of use in
clinical trials.

Previous multi-center AD biomarker studies have
identified confounding factors including sex, age,
center of origin, and sample centrifugation status,
which negated the utility of the miRNAs to differ-
entiate AD from controls [35]. To mitigate these
effects, we selected sex- and age-matched CSF sam-
ples and intentionally locked in the parameters for the
validation studies. The decision to maintain one tech-
nological methodology throughout our biomarker
studies was based on evidence of diminished repro-
ducibility of results between expression platforms,
even when using the identical RNA for each plat-
form [36]. This finding was also consistent with our
CSF analytic studies [37]. Thus, to maximize consis-
tency within these studies, we used the same vendor
and the same miRNA probes throughout the dis-
covery and validation phases. Further, we enforced
the use of identical manufacturing lots for kits and
reagents used throughout the experiments to mini-
mize variation from sources unrelated to the question
of differentiating AD from controls. In doing so, we
safeguard against spurious associations due to mea-
surement errors and batch effects, which is a strength
of our study that adds validity to the results.

Here we have validated that parsimonious combi-
nations of 26 of the discovery miRNAs continue to
differentiate AD patients from controls. However, the
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Fig. 8. Correlation of MMSE with top 14 miRNAs found to contribute to the best multimarker models. The X-axis is the rank order of the
14 higher-ranked miRNAs, and their respective single-marker AUCs are shown in the labels. The Y-axis is the squared partial correlation
(i.e., partial R2) of MMSE with the miRNA expression in patients, adjusted for age and sex. The figure shows that individual miRNAs that
ranked higher as AD markers (Table 4) correlate more strongly with changes in MMSE score. The Spearman correlation between partial R2

and miRNA rank was 0.82.

performance of each miRNA is not an exact match
between the discovery and validation studies. There
are two experimental parameters that may account
for this difference. First, U6 snRNA was used as
a normalizer for the discovery studies, but a com-
bination of non-changing miRNAs (including U6)
served as a better normalizer for the validation stud-
ies. Second, donors in the discovery cohort had more
advanced dementia (MMSE: 18) relative to the vali-
dation cohort (MMSE: 22), with a mean MMSE score
4 points lower in the discovery cohort. Thus, some
miRNAs may signal better in more advanced stages
of AD.

Seven out of these 26 miRNAs (miR-125b-5p,
-146a-5p, -146b-5p, -15b-5p, -195-5p, -30a-3p, -328-
3p) were previously identified by others as candidate
biomarkers for AD [38–41]. A previous study iden-
tified miR-27a-3p as a candidate biomarker that is
decreased in the CSF of AD patients [42]; however,
the miR-27a-3p finding was not replicated in our
studies. This difference is likely due to the use of
different vendors and platforms (TaqMan™ TLDAs
versus Exiqon SYBR Green miRCURY LNA arrays)
which can lead to inconsistencies in results even when
profiling an identical pool of RNA [36].

Our multimarker modeling identified certain miR-
NAs that on their own are not interesting as AD
biomarkers and would likely have been excluded
from earlier studies, but in the proper context they
strengthen a combined biomarker classifier (e.g.,
miR-331). In line with our results, other studies
show that multimarker modeling has strengths over
single markers. For example, a recent study of miR-
NAs isolated from CSF extracellular vesicles found
that linear combinations of a subset of differentiat-
ing miRNAs (miR-16-5p, -125-5p, -451a, -605-5p)
increased classification performance between Con-
trols and either young- or late-onset AD [43]. Two of
these four miRNAs (miR-16-5p, -125-5p) were iden-
tified in our discovery phase [10] and validated here
(Table 2), supporting our observations that measur-
able differences in AD patient miRNAs have utility
as clinical biomarkers, and miRNA combinations
increase sensitivity and specificity compared to single
miRNAs.

Our initial experiments with AD miRNA biomark-
ers focused on CSF, which directly bathes the brain.
We recognize that plasma is a more accessible
biofluid, and we are encouraged by pilot studies
indicating that AD miRNA biomarkers are robustly
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detected in plasma, but extensive plasma studies are
beyond the scope of this report. We are currently
designing experiments to assess the performance of
the AD miRNAs in a statistically powered study in
plasma samples that match this validation cohort.

In summary, the validation studies presented here
provide further, confirmatory evidence that miRNA
expression in CSF from living donors can distinguish
AD patients from Controls. Of 37 miRNAs from the
discovery study, 26 miRNAs continue to differentiate
AD patients from Controls. Our exhaustive classifi-
cation performance revealed that 14 of the 26 AD
biomarker candidates contribute strongly and in a
mutually complementary and additive manner to AD
prediction across a broad range of model scenarios.
The miRNAs validated in this study form a robust set
of biomarkers that will now be further evaluated for
use as clinical biomarkers for AD. It is still prema-
ture to recommend a final list of miRNAs for clinical
practice. The miRNAs need to be evaluated for their
performance in classifying mild cognitive impair-
ment and their presence in plasma (both discussed
above); and we are currently undertaking those stud-
ies. They will also be evaluated as to their specificity
for AD versus related neurodegenerative disorders
and non-degenerative dementia, and examined in lon-
gitudinal studies in individual patients to determine
their efficacy as prognostic indicators of AD. More-
over, we are studying the functional relationships
between miRNAs and AD, along the lines of recent
reports investigating the role of miR-146a in inflam-
matory pathways in brain [44] human brain cells [45],
and AD transgenic mouse models [46]. The validated
miRNAs can serve to identify novel proteins and
pathways linked to AD, and may reveal novel targets
for the diagnosis and/or treatment of AD. Thus, our
validation of the CSF miRNAs as biomarkers for AD
in a new and independent cohort now supports their
advancement toward development and refinement as
biomarkers in the clinical setting.
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