New Approaches to Evaluating Maternal Cardiovascular Health in Animal Models

Jonathan R. Lindner, MD, FASE, FACC M. Lowell Edwards Professor of Cardiology Chief, ONPRC Division of Cardiometabolic Health Oregon Health & Science University

Research Support:

NIH: R01-HL078610, R01-HL130036, P51-OD011092, R01-135024 NASA: 18-18HCFBP_1_009 Industry: Lantheus Medical Imaging, Philips

DOHAD With a Focus on the CV System

Palinski W. Circulation. 2014;129,2066

Maternal CV Health and Programming

Non-invasive Evaluation of CV System

Preclinical Evaluation of CV System: Mice to Monkeys

Animal Experimental Imaging Facilities and Cores

Non-invasive Evaluation of CV System

Anatomy & Physiology

Cell and Molecular Response

Higher Order Thinking

Ultrasound Measurements of Maternal Vascular Health

160 -120 -80 40 · 0 20000 -10000 -- 0 -10000 --20000 athal **Pulse Wave Velocity Arterial Elastance** Prox Ao _ 1.2 Pressure (mmHg pcity (m/s) 0.8 150 100 Fem Artery 0.4 0 0 0.0 0.5 1.0 Time (sec)

Elastic (Young's) Modulus

Vascular Status

Advanced Imaging of the Ventricle

Real-time 3D Volumetric Imaging

Myocardial Work Index

Afterload and Force-velocity Relations

Sonnenblick EH, et al. Circ Res 1966;19:980

Matching Measurement to Pathway of Interest

Pathophysiology	Best Metric(s)
Decreased LV function	Systolic strain (normalized to load), End-systolic elastance, cardiac output, myocardial work
Hypertrophy	LV mass index, LV mass normalized to afterload, WT/D ratio
Abnormal relaxation or compliance	Transmitral Doppler, E', peak negative strain rate, LV diastolic compliance
Abnormal matrix regulation	Abnormal compliance (above), T1/T2 mapping, Gd kinetics
Abnormal perfusion	Microvascular blood flow normalized to work, microvascular blood volume, BOLD imaging
Abnormal metabolism	PET metabolic imaging, MR spectroscopy

Expert Assessment of LV and RV Systolic Function

Programmed Origins of Atherosclerosis and Vascular Disorders

Balistreri CR, Cardiovasc Med 2020;23:02113

Regulation of Microvascular Tone

Vasodilation	Vasoconstriction
Nitric Oxide (NC) Endothelin
Adenosine	Angiotensin II
EETs/HETEs	Thromboxane
H_2O_2	Epi/Norepi
ATP	Dopamine
Prostacyclin	ATP
Bradykinin	Vasopressin
K+	Muscarinic agonists
Histamine	ADMA
VIP	
Anandamide	
Insulin, C-peptid	е

Global Assessments of Microvascular Status

CEU Perfusion Imaging

Intravital Microscopy

Lindner JR, et al., J Am Soc Echocardiogr 2002;15:396

Myocardial Perfusion

Skel Muscle Perfusion

Placental Perfusion

Assessment of Metabolic Control of the Microcirculation

Chadderdon SM, et al., Am J Pysiol 2012;303:E607

Scalability to All Pre-clinical Models

Strategies for Molecular Imaging

Molecular Imaging of NSLC

Wan L et al. J Nucl Med, 2013; 54(5):691-8

Song Y, et al. Sci Reports, 2017;7:3121

Role Pre-clinical and Clinical Molecular Imaging

Molecular Imaging in Cardiovascular Medicine

Classical Pathway of Atherogenesis

Tavakoli S, et al Antioxid Redox Sign 2012;17:1785

Endothelial Phenotype in Diet-induced Obesity

Chadderdon S, et al., Circulation 2014;129:471

Contemporary Concepts in Atherosclerosis

The Athero-accelerating Triggers

Moccetti F, et al., JACC 2018;72:1015

CANTOS: Effects of IL1 β Inhibition

Primary End Point with Canakinumab, 300 mg, vs. Placebo

Ridker PM, et al. NEJM 2017;377:1119

Shentu W, et al. JASE 2021;34:433

Remote Plaque Activation: Effect of IL1 β -inhibition

Shentu W, et al. J Am Soc Echocardiogr 2021;34:433

Molecular Imaging of Metabolism and HDAC

¹⁸F-FDG PET

¹¹C-HDAC PET

Conclusion

