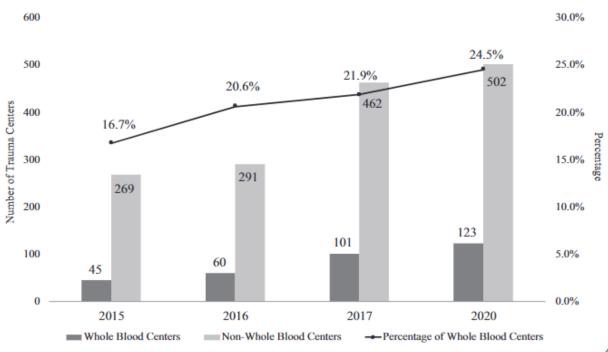

Building a System - Wide Whole Blood Program

Martin A. Schreiber MD FACS FCCM
Professor of Surgery
The Oregon Health & Science University

Acute Traumatic Coagulopathy (ATC)


OHSU

Whole Blood Systems

- Steady supply of safe donors
- Preparation of product
- Distribution based on incidence of use
- Cost effective
- Avoid waste especially with shortage

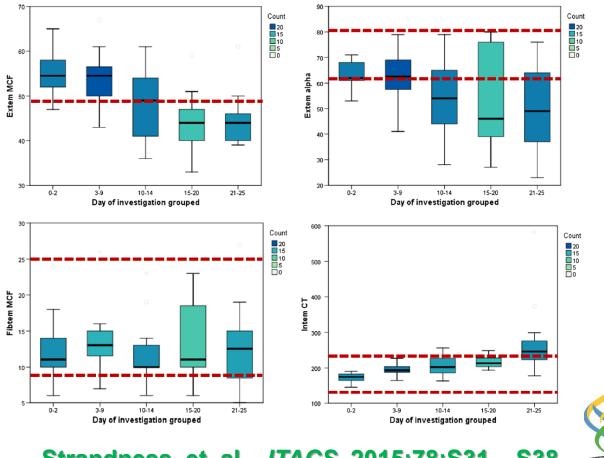
Whole Blood Use Increasing

Hashmi et al. *Transfusion* 2021;61:S348 - S353.

Domaine Leroy Musigny Grand Cru – France Cost - \$75,000

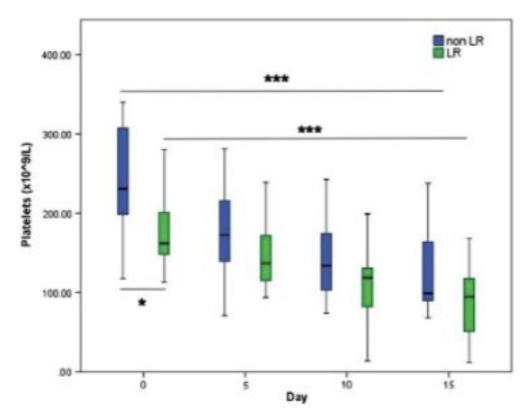
Low Titer O Fresh whole blood Still warm!

Cost - Priceless

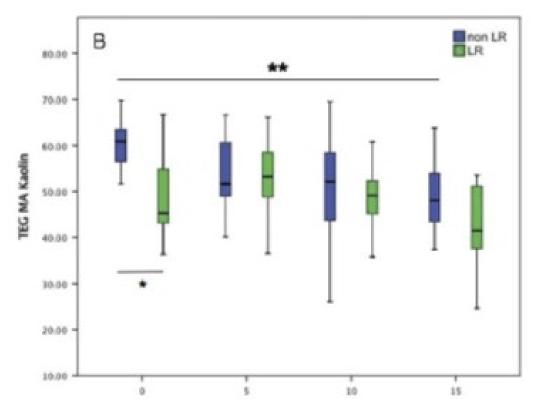

Charles Shaw Cabernet California Cost - \$2.99

LTOWB - CPDA Leukoreduced 35 Days old

Cost - \$600


WB Coagulation Function Over Time

Strandness et al. *JTACS* 2015;78:S31 - S38.


Effects of Leukoreduction

Remy et al. JTACS 2018;84:S104 - S114.

Effects of Leukoreduction

Leukodepletion and Belmont

Blood Cell Count Components Pre and Post Cold Stored Leukoreduced Whole Blood infusion via Belmont RI (Rapid Infuser)

Component	Average Pre-Belmont (SD)	Average Post-Belmont (SD)	Mean Difference (SD)	95% Confidence Interval	p Value
Red Cell Count (thousand cells/µL)	3.90 (0.77)	4.12 (0.91)	-0.23 (1.09)	-1.01 (-) 0.55	0.552
Hemoglobin (mg/dL)	11.97 (2.80)	12.44 (2.72)	-0.47 (3.30)	1.89 (-) 2.83	0.663
Hematocrit (Liter of cell/ liter blood)	37.30 (7.82)	39.33 (9.03)	-2.03 (10.56)	-9.58 (-) 5.52	0.558
Mean Cell Volume (fL)	95.78 (5.21)	95.50 (5.96)	0.28 (1.38)	-0.71 (-) 1.27	0.538
Platelet Count (100,000 cells/µL)	75.50 (27.32)	59.60 (24.96)	15.9 (13.37)	6.35 (-) 25.44	0.004

Cell count components compared between the Pre and Post Belmont whole blood samples. P values represent one-sided Student-t-test.

Thromboelastography Component Comparison Pre and Post Cold Stored Leukoreduced Whole Blood infusion via Belmont RI (Rapid Infuser).

Component	Average Pre-Belmont (SD)	Average Post-Belmont (SD)	Mean Difference (SD)	95% Confidence Interval	p Value
R time (minutes)	10.03 (4.97)	8.12 (2.62)	1.91 (3.19)	-0.37 (-) 4.1 9	0.091
K time (minutes)	4.76 (3.37)	4.66 (0.91)	0.10 (3.47)	-2.39 (-) 2.59	0.929
α Angle (degrees)	57.49 (11.39)	57.22 (1.92)	0.27 (9.40)	-6.46 (-) 7.00	0.930
Maximum Amplitude (mm)	49.64 (6.06)	45.12 (1.44)	4.52 (5.75)	0.40 (-) 8.64	0.035
Clot Strength (Kdynes/cm ²)	5059.29 (1212.01)	4166.34 (769.70)	892.95 (1045.80)	144.82 (-) 1641.08	0.028

Thromboelastography components compared between the Pre and Post Belmont whole blood samples. P values represent one-sided Student-t-test.

14 Day old leukodepleted LTOWB before and after Belmont infusion

Hoyos Gomez T et al. Injury 2022 PMID 36180259.

LTOWB and Shortage

- Domaine Leroy Musigny
 - Effective hemostasis
 - Reduced blood requirement
 - Decreased need for donors
- 3 Buck Chuck
 - No improved hemostasis
 - Increased blood requirement
 - Exacerbate the shortage

Armed Service Blood Program

- Worldwide responsibilities
 - Peacetime
 - War
- Servicemembers, family members, veterans in US or abroad
- Blood obtained from MTFs, shipped

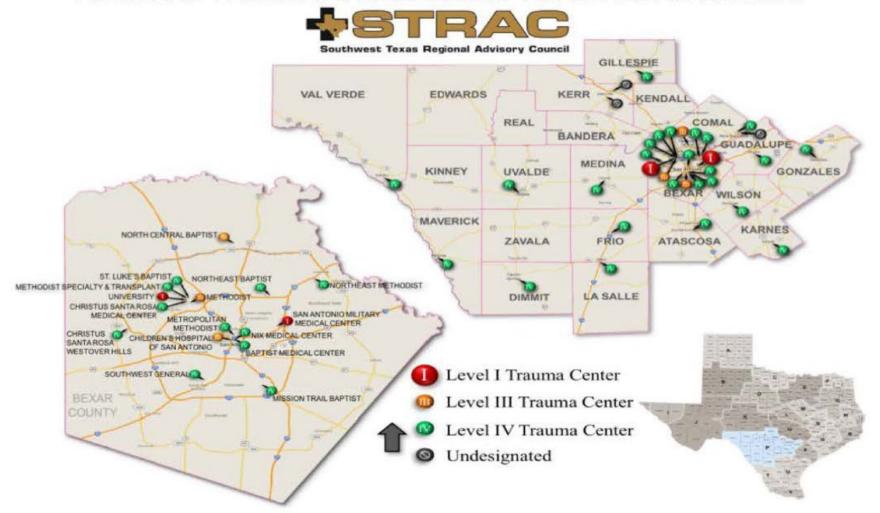
ASBP FWB

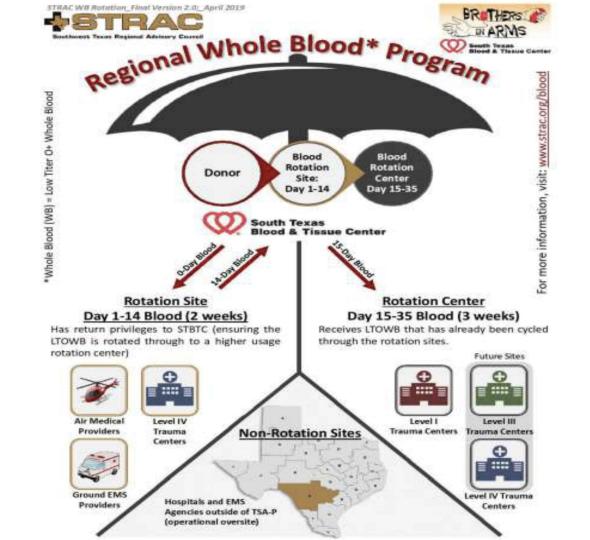
- Screened low risk population
- Formally tested for Hepatitis B and HIV at time of deployment
- Rapid testing after donation
- 80% sensitive
- Not FDA approved

ASBP LTOWB

- Stored in CPDA 1 solution, 35 days
- Not leukoreduced
- Better platelet number and function
- Supply chain
 - Level 1 trauma SAMMC
 - Deployed settings

ASBP Special Forces medic backpacks


American Red Cross


- Largest supplier of blood products in US
- Donors general population, stringent requirements, formal testing, FDA
- LTOWB
 - Leukoreduced (allows RBC salvage)
 - Stored in CPD solution, 21 days

REGIONAL TRAUMA & EMERGENCY HEALTHCARE SYSTEM

Southwest Texas RAC

- Distributes WB across 26,000 sq miles
- Source Brothers in Arms
- Anti A, anti B < 1:256
- O+
- No leukocyte reduction
- CPDA 1, 35 days expiration

Brothers in Arms

- Reliable and loyal donor source
- 75% of screened men were eligible
 - 1286 donating at last count
- Donation rate Every 2 months
- Social media and special events
- Blood resupplied when used
- Wastage rate 1 − 2%

Received: 31 December 2020

SUPPLEMENT ARTICLE

TRANSFUSION

Prehospital whole blood reduces early mortality in patients with hemorrhagic shock

Maxwell A. Braverman¹ | Alison Smith¹ | Douglas Pokorny¹ | Benjamin Axtman¹ | Charles Patrick Shahan¹ | Lauran Barry¹ |

Hannah Corral¹ | Rachelle Babbitt Jonas¹ | Michael Shiels² | Randall Schaefer³ | Eric Epley³ | Christopher Winckler⁴ |

Elizabeth Waltman⁵ | Brian J. Eastridge¹ | Susannah E. Nicholson¹ Ronald M. Stewart¹ | Donald H. Jenkins¹

	PHT $(n=58)$	NT (n = 156)	<i>p</i> -value
Median prehospital nadir SBP (IQR)	75 (62–83)	74 (66–82)	.91
Median prehospital HR (IQR)	113 (90–128)	93 (79–125)	.03
Median prehospital SI (IQR)	1.5 (1.2–2.0)	1.4 (1.1–1.8)	.051
Median arrival SBP, mmHg (IQR)	92 (81–114)	86 (77–100)	.07
Median arrival HR, mmHg (IQR)	113 (92–130)	106 (83-128)	.87
Median arrival SI (IQR)	1.2 (0.87–1.48)	1.21 (0.9–1.5)	.66
Median Delta SI (IQR)	-0.38 (-0.08 to -0.72)	−0.18 (0.02 to −0.48)	.04
Death in ED, % (n)	0.0 (0)	7.1 (11)	.04
Death in 6 h, % (<i>n</i>)	5.3 (3)	14.1 (22)	.08
Death in 24 h, % (<i>n</i>)	17.2 (10)	23.1 (36)	.36
Hospital death, $\%$ (n)	13.8 (8)	25 (39)	.08
CAT3+ transfusion requirement, $\%$ (n)	53.4 (31)	60.3 (94)	.37
MT (>10 U in 24 h), % (n)	61.5 (16)	48.7 (75)	.23
Median arrival transfusion volume, ml (IQR)	1300 (0-2000)	1975 (1000–3175)	<.01
Median LOS transfusion volume, ml, (IQR)	2825 (1550-5500)	2000 (1300-4000)	.048
Braverman et al.	Transfusion 2021;61:	S15 – S21.	TRAUMA Center

Local Solutions

- Hospital systems
- Requires blood donation center
- Stable donor pool
- Hybrid possibilities
- Facilitates FWB but not FDA approved

Blood Shortage - Pandemic

Category	Amount	
US population	328.2 million persons	
Pre-COVID-19 estimates		
Adjustment for exclusion factors (328.2 × 0.626)	205.4 million persons eligible to donate	
Actual number of blood donors	8 million donors	
Percentage of actual eligible blood donors (8 million/ 205.4 million)	3.9	
COVID-19 estimates		
Impact estimate (18 × 3.34)	60 million persons	
Adjustment for exclusion factors (328.2–60 = 268.2 × 0.626)	167 million persons eligible to donate	
Actual number of blood donors (167 × 0.039)	6.5 million donors	
Percentage change in actual eligible blood donors ([6.5–8]/8)	19	

TRAUM Center

Why Have a Emergency Walking Blood Bank Plan Ready? What is the plan when the shelves are empty?

January 2020

March 2020

DOI: 10.1111/trf.16458

SUPPLEMENT ARTICLE

TRANSFUSION

Civilian walking blood bank emergency preparedness plan

```
John B. Holcomb<sup>1</sup> | Philip C. Spinella<sup>2</sup> | Torunn Oveland Apelseth<sup>3,4</sup> |
Frank K. Butler<sup>5</sup> | Jeremy W. Cannon<sup>6</sup> | Andrew P. Cap<sup>5,7,8</sup> |
Jason B. Corley | Heidi Doughty<sup>10</sup> | Michael Fitzpatrick<sup>11</sup> |
Sara F. Goldkind<sup>12</sup> | Jennifer M. Gurney<sup>7</sup> | Mary J. Homer<sup>13</sup> |
Sarah J. Ilstrup<sup>14</sup> | Jan O. Jansen<sup>15</sup> | Donald H. Jenkins<sup>16</sup> |
Marisa B. Marques<sup>17</sup> | Eugene E. Moore<sup>18</sup> | Paul M. Ness<sup>19</sup> |
Kevin C. O'Connor<sup>20</sup> | Martin A. Schreiber<sup>21</sup> | Eilat Shinar<sup>22</sup> | Steve Sloan<sup>23</sup> |
Geir Strandenes<sup>3,24</sup> | James R. Stubbs<sup>25</sup> | Audra L. Taylor<sup>26</sup> |
Kevin R. Ward<sup>27</sup> | Elizabeth Waltman<sup>28,29</sup> | Mark Yazer<sup>30,31,32</sup> ©
```


Execution

- Organize collection site prior
 - Collection, store and transfuse minimizing clerical errors
- Trained individuals
 - Adhere to safety practices
 - Rescreen donors
 - FDA screening, drawing, labeling

Pre – Screened Population

- Low risk population
- Blood type known
- Testing every 90 days
 - Full TTD panel
 - Low titer to anti A and anti B
 - anti HLA antibodies in females

When to Activate

- FDA approved products preferred
- Available blood supply overwhelmed
- May need FWB to get platelets
 - Rural
 - Urban

CoTCCC Priority List

- Cold stored LTOWB
- FWB
- 1:1:1 plasma:platelets:RBCs
- 1:1 plasma:RBCs
- 1 Whatever you have

Donor Testing

- Vital signs, Hgb
- Confirm blood type, Rh
- Rapid testing for HIV, Hep B, Hep C, RPR, malaria (85% sensitive)
- Aliquot to licensed lab for post hoc tests

Collection

- Standard blood collection bags and tubing properly labeled
- 16 gauge needle
- Tourniquet or BP cuff 40 60 mmHg
- Bag filled to mark or 585g = 450cc
- Duration of collection documented

SUPPLEMENT ARTICLE

How do I get an emergency civilian walking blood bank running?

Silje Helland Kaada,¹ Torunn Oveland Apelseth,^{1,2} Kristin Gjerde Hagen,¹ Einar Klæboe Kristoffersen,^{1,3} Stig Gjerde,⁴ Kristian Sønstabø,⁴ Henrik Halvorsen,⁵ Tor Hervig,^{1,3} Geir Arne Sunde,⁴ Geir Olav Dahle,⁴ Mari Christine Johnsen,⁴ and Geir Strandenes^{1,6}

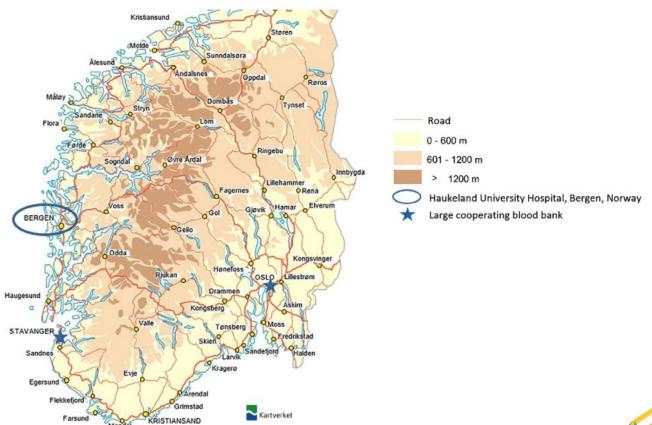
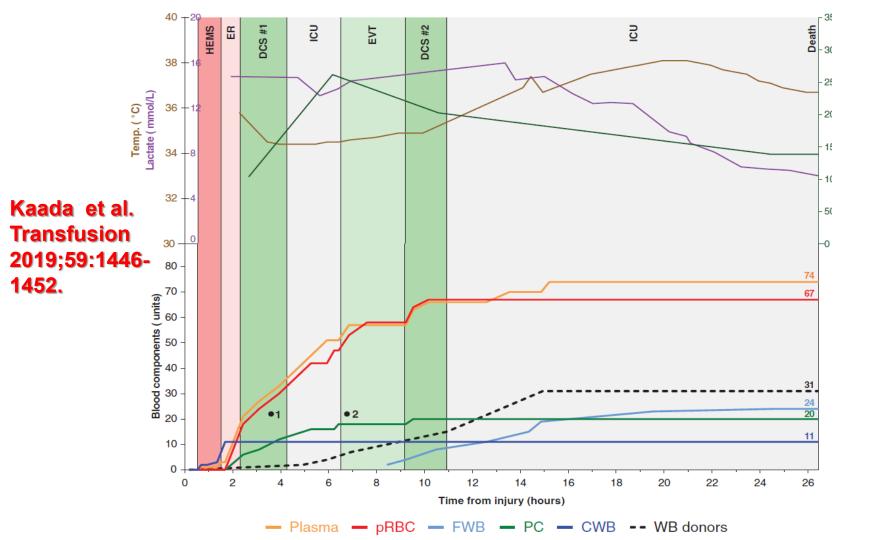



Fig. 2. Map illustrating geographical conditions around Bergen (pop. 300,000), the second largest city in Norway (pop 5.3 mil) and distance to the closest cooperating large blood banks.

Future Possibilities

- TTD biggest limitation
- Pathogen reduction riboflavin UV light
 - Plasma
 - Platelets
- Whole blood being tested now

Final System Considerations

- What is low titer?
- Will you give O+ to females?
- Can females donate?
- Will you leukoreduce?
- How long will you store the blood?
- Do you dare to consider WBB?
- How good is your wine?

