Imaging in Pediatric Trauma Controversies and Best Practices Lucas McDuffie, MD Assistant Professor of Pediatric General/Thoracic Surgery

Associate Trauma Medical Director

Changing What's Possible

Disclosures

- None
- I am sort of an amateur trauma surgeon

Pediatric Trauma Care at MUSC

- ACS Pediatric Level 1 Trauma Center
- >~700 patients annually
- Patients 16 years of age or less
- ~20% penetrating trauma
- > 5 pediatric surgeons

The Medical University of South Carolina Shawn Jenkins Children's Hospital

Pediatric Trauma Care at MUSC

Penetrating Blunt

Changing What's Possible

Rules of Pediatric Trauma

- Unstable patients need therapeutics before diagnostics
- An arterial line never saved a kid's life
- The younger the kid, the more likely they are to injure their head
- The older the kid, the more likely likely they are to injure their body
- "It takes a village"
- Listen to moms (and dads)
- Think about child abuse
- Children are not small adults
- Kids' clotting mechanisms are amazing
- Hypotension in a child is bad news

Why Should You Care?

- Trauma is the leading cause of death in children after 1 year of age
 - National Center for Injury Prevention and Control

Children are not little adults

- Mechanistically
- Anatomically
- Physiologically
- Psychologically
- Developmentally

Physiologic Differences

Normal heart rate by age (beats/min)				
Age	Awake rate			
Newborn to 3 months	85-205			
3 months-2 years	100–190			
2–10 years	60–140			
>10 years	60–100			
Normal respiratory rate by age (breaths/min)				
Infants (<12 months)	30-60			
Toddler (1–3 years)	24-40			
Preschool (4–5 years)	22–34			
School age (6–12 years)	18–30			
Adolescence (13–18 years)	12–16			
Systolic blood pressure hypotension reference ranges (mmHg)				
Term neonates (0–28 days)	<60			
Infants (1–12 months)	<70			
Children 1–10 years	<70 + (age in years × 2)			
Children >10 years	<90			

Not a lot of blood to bleed

Age	Estimated blood volume (mL/kg)
Premature infant	90–100
Term infant to 3 months	80–90
Children older than 3 months	70
Obese children	65

Physiologic Cliff

Why discuss pediatric imaging?

- Accurate/prompt diagnoses important to prevent morbidity/mortality
- Facilities have different capabilities
 - Less comfort with pediatric trauma care lower volume, high stakes
- Must consider long-term consequences along with short term
- American Pediatric Surgical Association (APSA) Committee on Trauma has made minimizing unnecessary radiation a priority

Balancing injury diagnoses with radiation dose

musc

Irens

The perfe

- Must hav
- Must be
- Must be
- Must no
- Must no
- Must be
- Must be

Children's Health Medical University of South Carolina

Anatomy: Head

- Proportionally larger
 - Greater incidence of injury
- Thinner skull
 - Less protective
- Incompletely ossified
 - Less protective
- Open fontanels
- Brain plasticity
- Prominent occiput in young children
 - Can make C-spine stabilization difficult

Imaging the pediatric head

*ci-TBI: risk of clinically important TBI needing acute intervention, based on PECARN validated prediction rules.

> 2 years of age \rightarrow

Changing What's Possible

The pediatric cervical spine

- Incidence of injury in children is low (~1.5% of trauma activations)
- Neurologic impairment in a child is devastating for both child and families
- Anatomy/physiology differs in significant ways
- Must weight costs/benefits carefully
- Radiation exposure to the neck not without consequences

The pediatric cervical spine

- Intrinsic elastic properties
 - ► Causes immediate reduction in injuries → bones are aligned
 → SCIWORA
- Physiologic pseudosubluxation (C2/C3)
- Underdeveloped facet joints
- Variable ossification

Management of cervical spine trauma in children

 $Phillip \ Correia \ Copley ^1 \cdot Vicky \ Tilliridou^2 \cdot Andrew \ Kirby ^3 \cdot Jeremy \ Jones ^3 \cdot Jothy \ Kandasamy ^1 \ Control Mathematical Control Mathema$

European Journal of Trauma and Emergency Surgery (2019) 45:777–789

The pediatric cervical spine

- Prominent occiput in young children
 increased
 - Thoracic elevation or occipital recess on spine board

Emergency transport and positioning of young children who have an injury of the cervical spine. The standard backboard may be hazardous

J E Herzenberg ¹, R N Hensinger, D K Dedrick, W A Phillips

Pediatric NEXUS

There is good data for the value of AP/Lateral plain film in younger children
 Odontoid view of limited value

 Should consider plain films as initial study in a noncommunicative child or those
 < 3 years of age

International Society for Pediatric Neurosurgery

The pediatric cervical spine – future directions?

- Some centers are scanning C1-C3 along with the head in younger children
 - Injuries less likely in C4-8
 - Avoids thyroid radiation
- "Fast" MRI of head/C spine
 - AKA no sedation MRI, can be performed in 5-20 minutes
 - Motion-insensitive sequences
 - Can be performed in stable patients along with MRI head
 - Parent can "ride-along" in MRI
 - Babies can get a feed and a swaddle and will sleep through entire exam

The pediatric chest

- Increase rib flexibility and compliance until 8-10 years of age
- Decreased ossification
- Small size to body surface area
- Transmission of traumatic energy internally

Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study

Mark S Pearce, Jane A Salotti, Mark P Little, Kieran McHugh, Choonsik Lee, Kwang Pyo Kim, Nicola L Howe, Cecile M Ronckers, Preetha Rajaraman, Sir Alan W Craft, Louise Parker, Amy Berrington de González

Lancet 2012; 380: 499–505

- A CT scan may triple the risk of leukemia and brain cancer over subsequent 10 years
- In absolute terms: for every 10,000 CT scans → 1 additional brain cancer, 1 additional leukemia

Chest computed tomography imaging for blunt pediatric trauma: not worth the radiation risk¹

Courtenay M. Holscher, MD,^{a,*} Leonard W. Faulk, MBA, MD,^a Ernest E. Moore, MD,^{a,b} Clay Cothren Burlew, MD,^{a,b} Hunter B. Moore, MD,^{a,b} Camille L. Stewart, MD,^{a,b} Fredric M. Pieracci, MD,^{a,b} Carlton C. Barnett, MD,^{a,b} and Denis D. Bensard, MD^{a,b}

JOURNAL OF SURGICAL RESEARCH 184 (2013) 352-357

 CT did not change management, only changed radiation exposure

Guidelines for CT scans in pediatric blunt thoracic injury

Concern for injury \rightarrow CXR. If abnormal findings \rightarrow CT

Application of a Thoracic CT Decision Rule in the Evaluation of Injured Children: A Quality Improvement Initiative

Katie Downie, MSN, RN, CPN ■ Alicia McIntire, MSN, CPNP-PC ■ Joseph Tobias, MD ■ Sanjay Krishnaswami, MD, FACS, FAAP ■ Mubeen Jafri, MD, FACS, FAAP ■

KEY POINTS

- Traumatic injuries of the chest are rare in children.
- Application of decision rules can safely limit ionizing radiation and cancer risk in injured children.
- Pediatric imaging protocols are recommended as best practice.
- Electronic medical records functionality standardizes and supports clinical workflows.

Table 2. Pre- and Postprotocol Chest Radiography andThoracic Computed Tomography Utilization

	Preprotocol N = 488	Postprotocol N = 568	р
No imaging of chest	240 (49.2%)	340 (59.9%)	
Chest radiography only	119 (24.4%)	156 (27.5%)	
TCT only	74 (15.2%)	55 (9.7%)	
Chest radiography and TCT	55 (11.3%)	17 (3.0%)	
Total TCT	129 (26.4%)	72 (12.7%)	<.05
Compliance		501 (88%)	
Note TCT - thereas computed top	agraphy		

Note. TCT = thoracic computed tomography.

The pediatric abdomen

- Abdominal wall poorly developed
- Compliant chest wall/diaphragm
- Reduced visceral/perinephric fat
- Transmission of traumatic energy internally

Organ specific differences exist

Who gets a CT A/P?

PECARN Data; 12K enrolled children; 6.3% had intra-abdominal injury (IAI)

musc

Holmes et al. Identifying children at very low risk of clinically important blunt abdominal injuries. Ann Emerg Med. 2013 Aug;62(2):107-116

- Triad of abdominal wall ecchymosis, intraabdominal injury, and chance fracture of lumbar vertebrae
 - May result in injury to hollow viscus, occasionally pancreaticoduodenal complex
 - Injury to visceral vessels, especially the aorta
- ► All children with true seat belt sign \rightarrow CT

- 8 year-old male
- Free fluid in the pelvis
 → either blood or succus or both

- 8 year-old male
- Intra-operative findings

- 8 year-old male
- Intra-operative findings

- 8 year-old male
- Intra-operative findings
- Mesenteric bleed (~1L blood in abdomen)
 - Note: slightly tachycardic but no evidence of shock otherwise
- ► Multiple enterotomies → small bowel resection

4 year old, aortic transection

9 year old, chance fracture

Changing What's Possible

Seat belt sign of the neck?

- Consider CTA to evaluate blunt cerebrovascular injury
- Limited data in pediatric trauma patients to guide imaging for blunt cerebrovascular injury

Screening **<u>RECOMMENDED</u>**

High energy transfer mechanism with <u>any</u> of the following:

- Cervical spine fracture*
- Skull base fracture
- LeFort II/III fracture
- Clothesline type injury or neck abrasion with significant swelling, pain, or altered mental status
- New onset anisocoria
- Neurological exam <u>NOT</u> explained by brain imaging
- Severe epistaxis

CONSIDER Screening

High energy transfer mechanism with <u>any</u> of the following:

- Clavicle fracture
- Other skull fracture
- GCS ≤ 8

* The following cervical spine injuries are considered high risk for blunt cerebrovascular injury:

- Unilateral or bilateral facet subluxation (includes jumped, perched, fractured)
- Antero/Retro Listhesis of vertebral bodies
- Fracture of the transverse foramina (where the vertebral artery runs)
- Any fracture of C2 or C3
- Any injury concerning for distraction of the cervical spine
- Any injury involving the occipital-cervical junction stability

Blunt cerebrovascular injury

Child abuse

- Liberalize CT scanning a bit
- If AST/ALT are elevated above 80, then there is good data to suggest it is worth scanning
 - \blacktriangleright injuries may present in a delayed fashion \rightarrow lower threshold to scan
 - Need for documentation/understanding of injuries
- Need a high index of suspicion

The final word about trauma imaging in children

- A complex issue competing interests
- ALARA principle (As Low As Reasonably Achievable)
- "Pan-scanning children should be condemned" APSA Committee on Trauma
- BUT--if something just isn't right, don't be afraid to scan (except for the chest; don't scan the chest)

THANK YOU

Changing What's Possible