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The Challenges, Opportunities, and Technologies of the 215t century
Necessitate Wellness-Centric Healthcare and focus on healthy aging
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Scientific Wellness Pilot: Pioneer 100
Pls: Lee Hood and Nathan Price
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Assays /| Measurements—108 Pioneers

Creating personal, dense, dynamic data (PD3) clouds — “deep"phenotyping”
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Price, Magis, Earls...Hood, Nature Biotechnology, 2017
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Turning data to insights fuels the future of healthcare

The AI Will See You Now

As medical research produces ever more data about health
and disease, doctors are turning to artificial intelligence tools
to help them make the best decisions for patients.

By LEE Hoop AND NATHAN PRICE

y virtue of their med-
ical training, doctors
have a wealth of
knowledge, experi-
ence, wisdom and
judgment. Yet even the greatest of
human brains can’t remember or
interpret a tiny fraction of the in-
formation now available on hu-
man health and disease. Just a
few years ago, most medical deci-
sions were based entirely on the
knowledge in the head of the doc-
tor at the time the decision was
made. Today that is beginning to
change, thanks to the rapid devel-
opment of artificial intelligence.
The evolution that brought the
world ChatGPT and similar large
language models is making Al one
of the most quickly adopted tech-
nologies in history, promising pro-
found changes for the way we live
and work..Some of the most im-

portant will take place in the field
of healthcare. As the technology
behind these systems progresses,
AI will soon be as much a part of
our healthcare experience as doc-
tors, nurses, waiting rooms and
pharmacies. In fact, it won’t be
long before AI has mostly re-
placed or redefined all of these.

A host of Al “decision support
systems” are already helping to
give physicians access to a wealth
of information at thewpoint of
care. These systems leverage what
computers are naturally good at—
storing, recalling and correlating
vast amounts of information vir-
tually instantaneously—and link. it
to the ability,of a human expert to
reason intuitively and think cre-
atively.

When early so-called “expert
systems” were first being devel-
oped in the 1980s ‘and 1990s, they
were met with hostility by many
physicians who worried that com-

puters would soon be in charge of
medical decision-making, taking
the “doctor’s touch” out of the
equation and binding the hands of
physicians whose opinions dif-
fered from the computer’s analy=
sis. But that’s not what happéned.
Research has shown that these
systems have gotten better and
better at helping doctors spot po-
tential outcomes that they might
have missed, without taking the
ultimate decision-making author-
ity out of their hands.

We are fast appreaching a time
when “centaur doctors,” combin-
ing the best parts of human intel-
ligence and Al assistance, will be
empowered to make bold medical
decisions with far fewer unin-
tended consequences. That’s vi-
tally important, because medical
mistakes account for about a
quarter of a million deaths annu-
ally in the U.S. alone. It is not an
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Microbiome health effects reflected in our biochemistry

artist: Allison Kudla
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Gut microbiome is important for healthy aging and is highly personalized

€he New Hork Eimes

A Changing Gut Microbiome
May Predict How Well You Age

People whose gut bacteria transformed over the decades tended
to be healthier and live longer.

Wilmanski...Price (Nature Metabolism, 2021)

Microbiome Uniquenessiincreases with Age:
From around age 50, each person's micrebiome
becomes more distinct, influencing personalized
health approaches.

Stable Metabolic Processes in Healthy Aging:
Despite increased uniqueness, key metabolic
functions are conserved in those who age healthily.

Microbiome Predicts Mortality Risk: The unique
characteristics of an individual’s microbiome can
predict overall mortality risk in the elderly.
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Microbiome was the most (only) measure predictive of
weight loss at baseline independent of BMI
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e Diener et al., mSystems, 2021 Thorne Healthlech®




Quantifying Metabolic Health Differently

Using phenomics to define data-driven health metrics
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+ Correlates with mortality and chronic
diseases

+ May identify metabolically unhealthy
individuals who occupy a normal BMI

Clinical Labs

+ Limited capacity to capture complex
metabolic and physiological
differences

+ Multidimensional profile of obesity,
built on comprehensive profiling that
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)/ + Responsive to lifestyle interventions,
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Gut microbiome influences statin efficacy

Statins have a very'weak (but detectable)
- Medication and dosage history effect on-microbiome composition, while
- Clinical laboratory tests microbiome composition has a strong
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Gut microbiome also associated with side effects
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Gut microbiome: Innovations in collections and analysis
New "Microbiome Wipe”

Most

Innovative
Hua, H. et al, Frontiers in Immunology (2022) Compqnies

PAOY

Gut Health
STEP1 STEP 2 STEP 3 STEP 4
Read the instruction Collect Stool Place wipe in container Release saline into
booklet Sample with Wipe and shake until lower container

dissolved

STEP S

Place container in
specimen bag and
shipper envelope
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Where we are headed: At home measurements
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Implications for the future

We should evaluate the contributions of the microbiome based on
reflections in the host — especially in the metabolome

We will need to map how diet and microbiome interact to fill in health-
enhancing niches

Microbiome is a key component in healthy aging — and becomes increasingly
unique to each individual

Microbiome wipe should provide a much-improved sample collection
experience — and making measurements easier and cheaper is key

Microbiomeiis initiated at birth and largely passed from mother to child

Thorne Healthlech®



Can genomics predict
the outcome of lifestyle
interventions?



Genetics affects likely level of LDL cholesterol in the blood
LDL
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Zubair N et al, Scientific Reports (2019)



Genetics predicts success or failure in lowering LDL-C
through lifestyle intervention

LDL

PGS = polygenic score

Difference in Change vs. PGS Q3
Conditonal on Baseline Value
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Zubair N et al, Scientific Reports (2019




Genetics predicts success or failure in elevating HDL-C
through lifestyle intervention

HDL HDL
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Implications for the future

Genetics are not destiny, but they quantitatively affect the outcomes‘for
lifestyle interventions

We can design health strategies for. people that highlight the areas where
the most progress is likely = where they would be working with their genes
rather than against

Combined with previous sectoin

Thorne Healthlech®
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O resulting in altered © that can be captured in

@ |Individuals carry variants
biological functions measured analyte levels.
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Anthropometric
Birth weight

Body mass index

Height

Waist-to-hip-ratio adjusted for BMI

Autoimmune
Ankylosing spondylitis

Celiac disease

Crohn's disease

Inflammatory bowel disease
Juvenile idiopathic arthritis
Primary biliary cholangitis
Primary sclerosing cholangitis
Psoriasis

Systemic lupus erythematosus
Type 1 diabetes

Ulcerative colitis

Cardiovascular
Atrial'fibrillation

Coronary artery disease
Diastolic blood pressure
Stroke

Systolic blood pressure

Cancer

Breast cancer
Prostate cancer

Cognitive
Cognitive performance
Educational attainment
Intelligence

Metabolic
Chronic kidney disease
Gout

Type 2 diabetes

4%

Interesting traits with well-powered
GWAS (N = 54):

Miscellaneous
Glaucoma

Male pattern baldness
Parental extreme longevity

Musculoskeletal
Carpal tunnel syndrome

Heel bone mineral density

Total bady bone mineral density

Neurological
Alzheimer's disease
Amyotrophic lateral sclerosis
Epilepsy

Multiple sclerosis

Wainberg...Hood, Price, PNAS(2020)

Other immune
Allergic disease

Asthma

Atopic dermatitis

FEV1

Psychiatric
Anxiety/tension
Bipolar disorder
Depression
Neuroticism
Subjective well-being
Worry

Sleep

Chronotype
Insomnia symptoms
Narcolepsy

Sleep duration




Which analytes correlate with the most

polygenic risk scores?

Metabolites

Number of significant PRSs

Number of significant PRSs
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Clinical labs

Proteins

Number of significant PRSs

Anthropometric
Autoimmune
Cancer
Cardiovascular
Cognitive
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Musculoskeletal
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Psychiatric

BN Sleep

Wainberg...Hood, Price,
PNAS (2020)



Selected associations with literature
evidence (4/756)

Trait

ALS

ALS

Asthma

Coronary
artery
disease

Analyte

Total Q-3s,
EPA, DHA

Total Q-6s

EDTA

IL-33

LDL, LDL
particle
number,
small LDL,
PCSK9

Direction

-+

Notes

Omega-3 hastened and Omega-6 delayed

neurodegeneration in an ALS mouse model
(Boumil et al. Open Neurol/ J 2017)

Synthetic chelating agent; only association is
with ALS. Heavy metal exposure associated

with increased ALS risk. (Bozzoni et al. Funct Neuro/ 2016;
Ash et al Toxicological Sciences 2018)

IL-33’s only association. LOF variant in /L33

associated with halved asthma risk (smith et al.
PLOS Genet 2017)

PCSKO is the sole proteomic association with
CAD.



Implications for the future

Depending on a person’s individual genetic profile and dynamic measures
can provide a prioritization of health-related choices

We may be able to map out the maost genetically at-risk people for disease
and tailor approaches to reduce _chances of'manifesting the disease

Combining with previous section, we can map for both what is highest risk
AND what is most likely changeable

Genetics is a bridge between health outcomes, deep phenotyping, and
development

Thorne Healthlech®



Journal of
Developmental Origins
of Health and Disease

How could deep
phenotyping and
DOHAD intersect?

cambridge.org/doh
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Research paper

Towards early risk biomarkers: serum metabolic signature in childhood
predicts cardio-metabolic risk in adulthood

Xiaowei Ojanen, Ph.D"**** Runtan Cheng, Msc'***, Timo Térmakangas, Ph.D>,

Noa Rappaport, Ph.D? Tomasz Wilmanski, Ph.D# Na Wu, Msc', Erik Fung, M.B.Ch.B., Ph.D°"®7, bR
Rozenn Nedelec, MSc®, Sylvain Sebert, PhD®, Dimitris Vlachopoulos, Ph.D”, Wei Yan, Ph.D', TRl
Nathan D. Price, Ph.D? Sulin Cheng, Ph.D"*>"'%* Petri Wiklund, Ph.D*>*

* Three childhood metabolic biomarkers (GlycA, L-HDL-PL, ApoB/ApoA) associated with increased
adult cardio-metabolic risk.

* Associations confirmed in multiple coherts,both sexes, from adolescence to older adulthood.

* Bidirectional causal relationship suggested between biomarkers and cardio-metabolic risk from
childhood to adulthood.

* Metabolic signature reflects atherogenic lipoproteins, reduced cholesterol efflux, and chronic
inflammation, potentially causing early vascular changes.

* Metabolomics panel could identify children at risk for future cardiovascular disease, allowing
preventive measures and follow-up.

Thorne Healthlech®




Why pregnancy is ideal for prototyping P4 medicine
of the future

* Pregnancy is one of the most important timeSyin life,
with major implications for lifetime health

» Major outcomes can be seen in a relatively short
period of time, 9 months or less

* It is generally a time of higher emgagement with the
nealthcare system

e It is a difficult period*far the development of novel
drugs, and sQ “scientificwellness” intervention
strategiesamay,be particularly attractive

* We can studydisease trajectories from the earliest
tramSitions,"and hopefully reverse/slow them to the
polint they are no longer problems

s [mportantly — disease trajectories can be unique!

/P4 Medicine

Predictive
Preventive

Personalized

Participatory

Paquette, Hood, Price, Sadovsky, Science Translational Medicine (2020) K




Yoel Sadovsky,

The Pregnancy ‘Pioneer 200°
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Collecting Dense, Deep-Phenotypic Data £

Questionnaires

Diet

Stress
Depression
Nausea

Fitbit

Physical Activity
Sleep
Heart Rate

Physical Activity
Blood pre , heart
Clinical S

te, weight, etc.

3 Yy L4
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/ARCH INSTITUTE

Environmental

 Metals (lead, mercury, etc.)

* Whole Genome Sequencing
* Transcriptomics

* Proteomics (~1500)
 Metabolomics (~1000)

Urine
e Metabolomics (~1000)

Microbiome
* Qut
* Vagina




Summary

* New capabilities are giving us unprecedented aceess/to studying
health and the transition states to diseasefenabling scientific wellness

* Longitudinal deep phenotyping studies are'uncovering numerous
interactions across systems and'gaining4n predictive power

« DOHAD is highly relevantto virtually all of these modalities -- from
genetics to the migrobiome,—‘and provides a fertile ground for
discovery
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WHY THE FUTURE OF

MEDICINE IS PERSONALIZED,

If interested, feel free to reach
out:

PREDICTIVE, DATA-RICH, AND

IN YOUR HANDS
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