Case Presentation

Niyati Narsana, MD

Assistant Professor, UC Davis School of Medicine

yr old with h/o DLBCL

- Admitted for autologous HSCT
- Prior chemo: R-CHOP x 6 cycles and S/P Brentuximab-Nivolumab x3 cycles
- Prophylaxis: ACV, Fluconazole and levofloxacin during neutropenia

yr old with h/o DLBCL

Surgical Pathology from Small intestine

Gastrointestinal mucormycosis

Broad pauci-septate
hyphae, ribboning,
branching at 90
degrees

- Transmural necrosis and angioinvasion

ID is consulted for further management. Which antifungal(s) would you recommend for treatment?

1) Liposomal amphotericin B

2) Liposomal amphotericin B + Micafungin + Isavuconazole

2) Liposomal amphotericin B + Micafungin

3) Liposomal amphotericin B + Micafungin + Posaconazole

Role of combination antifungal therapy for mucormycosis

- Retrospective review from 1994-2014
- 106 pts with hematologic malignancies
- 44% Monotherapy, 56% combo therapy (amb + echinocandin/posa)

Retrospective multicenter study

from 10 centers in North America, patients with invasive mucormycosis in hematologic malignancies/HSCT (2007-17)

30 d and 1 yr all cause mortality

- AmB monotherapy: 43% and 68%
- Amb + azole combo therapy:
 28% and 57%
- Surgical debridement: 16% and 17%

Trend towards lower mortality in combination group but not statistically significant (p > 0.1)

DOOR Analysis

The mold is identified as *Rhizopus microsporus*. Primary team asks if there are any oral options to send the patient to home with. Which one would you recommend ?

- 1) Itraconazole
- 2) Posaconazole
- 3) Isavuconazole

Susceptibility testing of 854 clinical isolates of Mucorales spp at UT San Antonio Health 2015-20

MIC ranges, MIC₅₀s, MIC₉₀s, modal MICs, and GM MICs to antifungals

Species (no. tested)	Antifungal	MIC (µg/ml)				
		Range	50%	90%	Modal	GM
Cunninghamella spp. (all isolates, 16)	Amphotericin B	0.5 to 2	2	2	2	1.35
	Isavuconazole	4 to >16	>16	>16	>16	>16
	Posaconazole	0.25 to 1	0.5	1	0.25	0.420
Cunninghamella bertholletiae (11)	Amphotericin B	0.5 to 2	2	2	2	1.37
	Isavuconazole	4 to >16	>16	>16	>16	16
	Posaconazole	0.25 to 1	0.5	1	0.25	0.441
Lichtheimia spp. (all isolates, 40)	Amphotericin B	≤0.03 to 1	0.125	0.5	0.06	0.134
	Isavuconazole	0.125 to 4	1	4	1	1.17
	Posaconazole	≤0.03 to 1	0.25	0.5	0.5	0.220
Lichtheimia corymbifera (16)	Amphotericin B	0.06 to 0.5	0.5	0.5	0.5	0.249
	Isavuconazole	1 to 4	2	4	2	2.29
	Posaconazole	0.125 to 0.5	0.5	0.5	0.5	0.310
Lichtheimia ramosa (22)	Amphotericin B	≤ 0.03 to 1	0.06	0.25	0.06	0.095
	Isavuconazole	0.125 to 2	1	2	1	0.802
	Posaconazole	0.06 to 1	0.125	1	0.06	0.186
Mucor spp. (all isolates, 106)	Amphotericin B	≤ 0.03 to 8	0.125	0.5	0.06	0.124
	Isavuconazole	2 to >16	8	>16	8	8.27
	Posaconazole	0.125 to 8	1	2	1	1.03

Badali H et al. J Clin Microbiol. 2021

	Mucor circinelloides (67)	Amphotericin B	≤ 0.03 to 8	0.06	0.5	0.06	0.110
		Isavuconazole	2 to >16	8	16	8	8.87
		Posaconazole	0.125 to 8	1	2	1	1.17
	Mucor velutinosus (24)	Amphotericin B	≤ 0.03 to 0.5	0.125	0.5	0.03	0.103
-Of the azoles tested,		Isavuconazole	2 to >16	4	8	4	3.77
posaconazole was most active		Posaconazole	0.25 to 2	1	2	1	0.728
(GM MIC range 0.157 to	Rhizomucor pusillus (32)	Amphotericin B	≤ 0.03 to 0.5	0.125	0.5	0.06	0.131
$1 \mu \sigma / ml$		Isavuconazole	0.06 to 2	2	2	2	1.07
τμg/111)		Posaconazole	≤ 0.03 to 0.5	0.25	0.5	0.25	0.157
	Rhizopus spp. (all isolates, 304)	Amphotericin B	≤ 0.03 to 2	0.25	0.5	0.25	0.181
-Isavuconazole (GM MIC range,		Isavuconazole	0.125 to >16	1	8	1	1.23
1.13 to 16µg/ml)	I I I I I I I I I I I I I I I I I I I	Posaconazole	≤ 0.03 to >16	0.25	1	0.25	0.257
	Rhizopus arrhizus (114)	Amphotericin B	≤0.03 to 1	0.125	0.5	0.06	0.136
-The activity of isavuconazole		Isavuconazole	0.125 to 4	1	2	1	0.907
was markedly lower against <i>Cunninghamella, Mucor</i> <i>spp</i>		Posaconazole	≤0.03 to 1	0.25	0.5	0.25	0.189
	Rhizopus delemar (67)	Amphotericin B	≤ 0.03 to 2	0.25	0.5	0.5	0.195
		Isavuconazole	1 to 16	4	16	2	4.34
		Posaconazole	0.125 to >16	0.5	1	0.5	0.621
	Rhizopus microsporus (121)	Amphotericin B	≤0.03 to 1	0.25	1	0.25	0.227
		Isavuconazole	0.125 to >16	1	2	1	0.823
		Posaconazole	≤ 0.03 to 4	0.25	0.5	0.25	0.213

Badali H et al. J Clin Microbiol. 2021

VITAL study

- Single arm open label trial in 34 centers to assess the safety and efficacy of isavuconazole to treat mucormycosis
- 37 pts with mucormycosis received isavuconazole for median of 84 days
- By D 42, 4(11%) had partial
 6 (43%) had stable invasive fungal disease
 1 (3%) had disease progression
 13(35%) died
- All cause mortality at D42 was similar between isavuconazole and amphotericin B matched controls (weighted all-cause mortality: 33% vs 41%; p=0.595)

RESULTS OF ANTIFUNGAL SUSCEPTIBILITY TESTING:

DRUGS:	RESULTS : mcg/ml	IN	TERPRETATION	:
Amphotericin B (AMB)	0.25	No	Established	Breakpoints
Posaconazole (POS)	0.06	No	Established	Breakpoints
Isavuconazole (ISA)	0.5	No	Established	Breakpoints
Terbinafine (TERB)	0.06	No	Established	Breakpoints

Performed at UT Health San Antonio

Invasive Mucormycosis in HSCT and hematologic malignancies

Twelve-month cumulative incidence of mucormycosis for hematopoietic stem-cell transplant (HSCT) recipients

Figure 1. Distribution of time to invasive fungal infection (IFI) stratified by infection type (all IFI cases in ...

Clin Infect Dis, Volume 50, Issue 8, 15 April 2010, Pages 1091–1100, https://doi.org/10.1086/651263

The content of this slide may be subject to copyright: please see the slide notes for details.

Risk factors associated with non-*Aspergillus* invasive mold infection in 20 patients who received allogeneic hematopoietic stem cell transplants at Fred Hutchinson Cancer Research Center (Seattle, WA), 1998–2002.

Variable	Unadjusted HR (95% CI)	Р
Nonmyeloablative conditioning	2.7 (1.1–6.8)	.03
High dose TBI in conditioning	3.1 (1.1-8.9)	.04
Neutropenia	4.1 (1.4–12.3)	.01
Ferritin level >2000 ng/mL	5.8 (1.0-34.7)	.05
Bone marrow iron level increased	3.5 (0.9–13.6)	.06
Transfusions, per 1 U increase	3.2 (1.2-8.9)	.02
Acute GVHD, grade ≥ 3	5.1 (2.1–12.5)	<.01
Chronic GVHD, clinically extensive	6.2 (1.5–25.3)	.01
Corticosteroid dosage 2.0-2.9 mg/kg/day	5.5 (1.1-28.5)	.04

Other risk factors from small retrospective studies: DM, Malnutrition, Voriconazole prophylaxis

Roden et al. Clinical Infect Dis. 2005

Figure 4. Distribution of Mucorales species among hematopoietic stem-cell transplant (HSCT; A) and solid-organ transplant (SOT; B) in TRANS-NET study from 2001-06

Clin Infect Dis, Volume 54, Issue 11, 1 June 2012, Pages 1–8, https://doi.org/10.1093/cid/cis195

The content of this slide may be subject to copyright: please see the slide notes for details.

Review of 31 cases of GI Mucormycosis

- Gastric mucormycosis more common in SOT (11/13)
- Intestinal mucormycosis more common in hematologic malignancies (12/16)
- Commonly presents as appendiceal, cecal or ileac mass
- Can also involve liver, spleen and pancreas

Osmon et al. Mycoses.2015 Petrikkos et al. Clin Infect Dis.2012 What are the common clinical manifestations of GI mucormycosis?

- Abdominal pain 45% 68%
- GI bleeding 48%
- Diarrhea 36%
- Fever 19%
- Change in bowel habits 10%

- Osmon et al. Mycoses.2015
- Quintero et al. Med Mycol.2022

Treatment and Outcomes of 31 pts with GI Mucor

- Of 28 cases, 16 (57%) died
- 9 (56%) had underlying hematologic malignancy/HSCT

Treatment	% Patients
Amphotericin +Surgery	74%
Amphotericin alone	16%
Surgery alone	3%
Surgery + alternative antifungal	7%

Systematic Review: 851 cases of Mucormycosis

Site of disease	Mortality n (%)
Rhino –cerebro-orbital	120 (42%)
Pulmonary	87 (51%)
Cutaneous	58 (31%)
Disseminated	75 (68%)
Gastrointestinal	39 (54%)
Species	Mortality n (%)
Rhizopus	101 (47%)
Mucor	26 (41%)
Cunninghamella	23 (77%)
Lichtheimia	21 (35%)
Apophysomyces	15 (44%)
Rhizomucor	11 (39%)
Saksenaea complex	6 (50%)

W. Jeong et al. Clinical Microbiology and Infection.2019

Multivariate model of risk factors for mortality among patients with zygomycosis.

Variable	OR (95% CI)	P	
Extent of infection			
Localized	Reference		
Disseminated	11.21 (5.79–21.73)	<.001	
Infecting organism			
Rhizopus species	Reference		
Cunninghamella species	2.78 (1.11-6.96)	.029	
Diabetes			
None	Reference		
Type I	0.31 (0.16-0.62)	.001	
No underlying condition	0.38 (0.22-0.66)	.001	
HIV infection	0.38 (0.15-0.94)	.037	
Renal failure	7.16 (3.40-15.07)	<.001	
Antifungal therapy			
None	Reference		
Amphotericin B deoxycholate only	0.21 (0.13-0.35)	<.001	
Lipid amphotericin only	0.10 (0.04-0.24)	<.001	
Amphotericin formulation and azole	0.09 (0.03-0.29)	<.001	
Other	0.14 (0.07-0.28)	<.001	
Surgery as primary therapy	0.24 (0.15-0.37)	<.001	

NOTE. Additional risk factors included within a similar model for analysis of site-specific infections are (with cutaneous infections as the reference): pulmonary infection (OR, 7.50; 95% CI, 2.84–19.80; P = <.001), rhinocerebral infection (OR, 6.39; 95% CI, 2.64–15.48; P = <.001), kidney infection (OR, 8.30; 95% CI, 2.54–27.16; P = .001), and gastrointestinal infection (OR, 22.51; 95% CI, 5.50–92.14; P = <.001).

Subsequent course

- Patient was discharged home on posaconazole
- Family/patient changed GOC to restorative, had 5 hospitalizations, c/b CMV Viremia, recurrent C diff colitis, hypothyroidism, line related PsA bacteremia, pressure injury to the heels causing osteomyelitis
- Continued on posaconazole with good trough levels
- Doing well at recent clinic visit, diarrhea resolved, getting wound care for heel and abdomen

Summary

- GI Mucormycosis is not very common and often missed, can involve gastric and intestinal sites, has high mortality
- Commonly presents as abdominal pain, GI bleed, diarrhea, fever
- Surgical debridement + antifungal therapy may have better outcomes
- Can consider combination antifungal therapy (Ambisome + azole) (Evidence limited with only small and retrospective studies)
- In vitro studies of clinical isolates indicate that posaconazole may be the most active of the extended spectrum azoles, but activity varies based on *Mucorales* species type.