ACS and Chest Pain Updates

Evan F Shalen, MD
Assistant Professor of Medicine
Section Head for General Cardiology
Knight Cardiovascular Institute at OHSU

• None

Learning objectives

- Identify current guideline documents for management of CAD
- Review approach to evaluation of chest pain
- Understand the spectrum of CAD encountered in the inpatient setting
- Understand the role of coronary CT imaging in the evaluation of chest pain and CAD
- Identify modern evidence-based post-PCI antiplatelet and anticoagulant strategies
- Understand the role of secondary prevention medical management in plaque stabilization

Recent CHD guidelines

2021

AHA/ACC/ASE/CHEST/SAEM/SCCT/ Guideline for the Evaluation and Diag of Chest Pain: A Report of the Ameri College of Cardiology/American Hea

Associ2021 ACC/AHA/SCAI Guidelin Practic Coronary Artery Revasculariz

Report of the American Collect

Cardiology/American Heart A

Joint Co 2023 AHA/ACC/ACCP Guideline for the Management of Patie Guidelin

d Brittany A. Zwischeni

JOURNAL ARTICLE GUIDELINES

2023 ESC Guidelines for the management of acute coronary syndromes: Developed by the task force on the management of acute coronary syndromes of the European Society of Cardiology (ESC)

Alaide Chieffo, Marc J C Show more **Author Notes**

Robert A Byrne , Xavis 2024 ESC Guidelines for the management of chronic coronary syndromes: Developed by the task force for the management of chronic coronary syndromes of the European Society of Cardiology (ESC) Endorsed by the European Association for Cardio-With Chronic Coronary Disease: A Rer Thoracic Surgery (EACTS)

the American Heart Association/Amer Christiaan Vrints ™, Felicita Andreotti ™, Konstantinos C Koskinas, Xavier Rossello, College of Cardiology Joint Committe Marianna Adamo, James Ainslie, Adrian Paul Banning, Andrzej Budaj, Ronny R Buechel, Giovanni Alfonso Chiariello ... Show more

Author Notes

Clinical Practice Guidelines

Hospital evaluation of chest pain

The hsTn evaluation- ESC 0/1 pathway

Spectrum of ischemic heart disease

- Atherosclerotic vs non-atherosclerotic
- Stable vs unstable
- Epicardial vs microvascular

Mechanisms of myocardial ischaemia

Acute coronary syndromes

- Atherosclerotic plaque rupture
- Minimal change in basic approach over the last 10-15 years

The Type II NSTEMI

- The bane of the hospitalist and cardiologist alike!
- Most think of this as "supply demand mismatch"
- Really just any non-plaquerupture cause of ischemia

Myocardial Infarction Type 2 Atherosclerosis and oxygen supply/demand imbalance Vasospasm or coronary microvascular dysfunction Non-atherosclerotic coronary dissection Oxygen supply/demand imbalance alone

Myocardial Injury

- Differentiation is challenging here!
- Imaging is often helpful
 - LVH
 - Low EF
 - Coronary or non-coronary distribution segmental dysfunction or thinning

The Type II NSTEMI

Pre-test probability of Type 1 MI

Absence of ischemic symptoms Acute medical illness or recent surgery Non-diagnostic ECG Borderline cTn elevation

Likely ischemic symptoms
No clear triggers for
type 2 MI
Known CAD
ST elevation
Very high cTn
Large cTn change over
serial measurements

Spontaneous coronary artery dissection (SCAD)

- Technically a "Type II" MI
- Up to 4% of MI presentations
- 35% in women 50 or under

SCAD

- Demographics (pretest prob)
- Angiography (ICA vs CCTA)
- Intravascular imaging

SCAD

- Management is a big challenge here
- Most spontaneously heal
- Frequent recurrent CP
 - Med management
 - CT imaging if available
- Association with FMD- image
- Post-SCAD counselling
 - Recurrence risk
 - Pregnancy

Myocardial infarction with nonobstructed coronary arteries (MINOCA)

- Heterogenous mix of etiologies
 - MRI can make a dx in about 75%
 - ~ 25% MI missed by angiography
 - ~25% Cardiomyopathy- Takotsubo most common
 - ~25% Myocarditis
 - ~25% Unclear

Coronary CT imaging- CAC

- Reflects calcified coronary plaque (late manifestation of atherosclerosis)
- A useful indicator of atherosclerosis to trigger prevention (statin)
- Calcification ≠ Stenosis

Coronary CT imaging- CAC

- Chest CT Impressions: "Incidentally identified severe coronary artery calcifications"
- Prognostically significant, but heterogeneously reported!
- Can drive pretest probability and approach to mgmt and prevention
- Al solutions are coming quickly here

From: Prevalence and clinical implications of coronary artery calcium scoring on non-gated thoracic computed tomography: a systematic review and meta-analysis

Author	CACS >0 Events No. CACS >0 CACS 0 Events No. CACS 0				Risk Ratio	RR	95%-CI		Weight
MACE					1				
Phillips et al.	41	66	75	190	-101	1.57	[1.22;	2.04]	5,4%
Schiffer et al.	35	42	14	27	- 100	1.61	[1.09;	2.37]	4.9%
Johsnon et al.	59	206	46	263	-100	1.64	[1.17;	2.30]	5.1%
Zorzi et al.	26	154	11	147		2.26	[1.16;	4,40]	3.6%
Shemesh et al.	150	5209	43	3673	- 100	2.46	[1.76;	3.44]	5.1%
Jacobs et al.	453	1262	62	461		2.67	[2.09;	3.40]	5.5%
Machino et al.	13	233	. 8	432	- 10	3.01	[1.27;	7.16]	2.9%
Lessmann et al. (Male)	298	2955	20	598	-8-	3.02	[1.93;	4,70]	4.6%
Lessmann et al. (Female)	105	1363	20	802	- 260	3.09	[1.93]	4.94]	4.5%
Rasmussen et al.	14	910	5	1035	- 18	3.18	[1.15;	8.81]	2,4%
Yang et al.	57	1070	53	3421	100-	3.44	[2.38;	4.971	5.0%
Gupta et al.	22	167	3	100		→ 4.39°	[1.35;	14.30]	2.0%
Trypkov etl al.	450	3293	44	1427	-100	4.43	[3.27;	6.00]	5.3%
Wang et al.	23	64	3	45		+ 5.39	[1.72;	16.87	2.1%
Rochl et al.	14	55	4	114		** 7.25	[2.50;	21.01]	2.3%
Itani et al.	10	1206	4	4914	-	→ 10.19	[3.20;	32.42]	2.0%
Roth et al.	6	48	0	27		→ 34,37	[0.07; 1	7464.29]	0.1%
Random effects model		13303		17676	-	2.91	12.26:	3.741	62.9%
Haterogenisty $J = 71\%, \pi^2$	$=0.2142, \mu < 0.01$								
All cause mortality									
Atkins et al.	209	263	114	165	22	1.15	[1.02]	1.30]	5.8%
Hughes-Austin et al.	116	418	41	233	-39	1.58	[1.15;	2.17]	5.2%
Aybay et al.	26	182	13	214		2.35	[1.25]	4.44]	3,8%
Castagna et al.	80	435	29	376	- mb	2.38	[1.60;	3.56]	4.8%
Williams et al.	108	271	20	129		2.57	[1.67;	3.95]	4,7%
Zimmerman et al.	9	69	2	40	-	+ 2.61	[0.59;	11.48]	1.4%
Heidinger et al.	32	253	10	226		2.86	[1,44;	5.68]	3.5%
Williams et al.	46	196	13	166	- 8	3.00	[1.68;	5.35]	4.0%
Chen et al.	46	262	11	231		3.69	[1.96;	6.95]	3.8%
Random effects model		2349		1780	-	2.13	[1.57]	2.90[32,135
Hammonicity: $L^2 = 13.6 s_s \eta^2$	$-0.093L_1p = 0.03$								
Random effects model		20652		19456		2.61	12.17;	3.14	100.0%
Prediction interval						•	11.07;	6.39	
Heterogeneity: $I^2 = 85\%$, τ^2	$= 0.1803, \mu < 0.01$			13					
Residual beterogeneity: 12 -				0	1 0.2 0.5 1 2 5	10			

Forest plot showing the relative risk of major adverse cardiovascular events (MACEs), all-cause mortality, and all events for patients with CACS 0 and CACS > 0

CT Angiography

The NEW ENGLAND JOURNAL of MEDICINE

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

CCTA

JULY 26, 2012

CTA

Coronary CT Angiography versus Standard Evaluation in Acute Chest Pain

ORIGINAL ARTICLE

Coronary CT Angiography and 5-Year Risk of Myocardial Infarction

The SCOT-HEART Investigators*

A Death from Coronary Heart Disease or Nonfatal Myocardial Infarction

Anticoagulation and antiplatelets after ACS

Antiplatelets after PCI (stable CAD)

Secondary prevention

Thank you

Evan Shalen Shalen@OHSU.Edu

