

Power and Sample Size Simulations in R OCTRI Research Forum

DATE: November 21, 2024 PRESENTED BY: ROBIN BAUDIER, MSPH, MFA, STAFF BIOSTATISTICIAN WITH THE BDP

Topics Covered

Very brief overviews of

- Power and Sample Size (PSS) concepts
- PSS simulations
 - When only when you have to
 - What Monte Carlo Simulations
 - How 4 basic steps & inputs

How to perform PSS simulations in R

- Simulating variables
- Using loops
- Looping tests on simulated datasets to calculate power
- 4 Examples of PSS simulations
 - Simple T-test
 - Correlated covariates
 - Repeated measures
 - Survival
- Packages that can make things a little easier

Topics <u>NOT</u> Covered

- Basics of R
- Basics of PSS calculations
 - Check out the OCTRI PSS 101 Seminar, co-developed by Meike Niederhausen, PhD and Alicia Johnson, MPH, and presented most recently by Alicia Johnson in July:
 - RECORDING: <u>https://echo360.org/media/03e6d606-6fa4-4861-a1d0-dd00e925a330/public</u>
 - SLIDES: https://drive.google.com/file/d/1bVBj7QpeBY8KwKXsgzp6IMUaKCtCrdVV/view

Power & Sample Size Concepts

A very brief overview

What is power?

Power is the probability of correctly rejecting the null hypothesis

Simulating the null hypothesis

model R2 ≥95% (for α = 0.05) How do you determine if a machine learning (ML) model performs better than chance? You can create a null distribution by

randomly permuting the outcome variable on your dataset a large number of times (e.g., 999) and run ML model on each dataset.

1 – (proportion of random R^2 < real data model R^2) = p-value

	H₀ is True	H₄ is True
Reject Ho	Type I Error False Positive α (alpha)	Correct True Positive 1-β (power)
Fail to reject H₀	Correct True Negative 1-α	Type II Error False Nagative β (beta)

 $H_0: R^2 = 0$ $H_A: R^2 > 0$

Simulating the alternative hypothesis

What is the probability of correctly rejecting the null hypothesis (power) with the specified effect size, N, and α?

Power = proportion of models (performed on data simulated with H_A distributions) with p-values a</a href="https://www.example.com"/>a</a href="https://www.example.com"/>a</a href="https://www.example.com"/>a</a href="https://www.example.com"/>a</a href="https://www.example.com"/>a</a href="https://www.example.com"/>a</a href="https://www.example.com"/>a</a href="https://www.example.com"/>a</a href="https://www.example.com"/>a

PSS SIMULATIONS

When, What & How

When should you use a PSS simulation?

• When there isn't an easier way. Before you start down the road of power simulations, check whether any R packages exist for the power simulation you want to perform!

#	Name of Test	in R?	Package	Function	
1	One Mean T-test	Yes	pwr	pwr.t.test	
2	Two Means T-test	Yes	pwr	pwr.t.test	
3	Paired T-test	Yes	pwr	pwr.t.test	
4	One-way ANOVA	Yes	pwr	pwr.anova.test	
5	Single Proportion Test	Yes	pwr	pwr.p.test	
6	Two Proportions Test	Yes	pwr	pwr.2p.test	
7	Chi-Squared Test	Yes	pwr	pwr.chisq.test	
8	Simple Linear Regression	Yes	pwr	pwr.f2.test	
9	Multiple Linear Regression	Yes	pwr	pwr.f2.test	
10	Correlation	Yes	pwr	pwr.r.test	
11	One Mean Wilcoxon Test	Yes*	pwr	pwer.t.test + 15%	
12	Mann-Whitney Test	Yes*	pwr	pwer.t.test + 15%	
13	Paired Wilcoxon Test	Yes*	pwr	pwer.t.test + 15%	
14	Kruskal Wallace Test	Yes*	pwr	pwr.anova.test + 15%	
15	Repeated Measures ANOVA	Yes	WebPower	wp.rmanova	
16	Multi-way ANOVA (1 Category of interest)	Yes	WebPower	wp.kanova	
17	Multi-way ANOVA (>1 Category of interest)	Yes	WebPower	wp.kanova	
18	Non-Parametric Regression (Logistic)	Yes	WebPower	wp.logistic	
19	Non-Parametric Regression (Poisson)	Yes	WebPower	wp.poisson	
20	Multilevel modeling: CRT	Yes	WebPower	wp.crt2arm/wp.crt3arm	
21	Multilevel modeling: MRT	Yes	WebPower	wp.mrt2arm/wp.mrt3arm	
22	GLMM	Yes^	Simr & Ime4	n/a	
*-parametric test with non-parametric correction PSS R packages					

What is a Monte Carlo simulation?

 Monte Carlo Simulations were invented during WWII to model nuclear fission and develop atomic bombs by <u>estimating</u> the possible outcomes of <u>an uncertain event</u>

What is a Monte Carlo simulation?

- Monte Carlo Simulations were invented during WWII to model nuclear fission and develop atomic bombs by <u>estimating</u> the possible outcomes of <u>an uncertain event</u>
- It's named Monte Carlo after the well-known casino district in Monaco because of the <u>element of chance</u> being modeled

What is a Monte Carlo simulation?

- Monte Carlo Simulations were invented during WWII to model nuclear fission and develop atomic bombs by <u>estimating</u> the possible outcomes of <u>an uncertain event</u>
- It's named Monte Carlo after the well-known casino district in Monaco because of the <u>element of chance</u> being modeled
- They are used in a wide range of fields and applications, including financial risk assessment and long-term forecasting, estimating the duration or cost of projects, analyzing weather patterns, traffic flow, and in a wide swath of applications in biomedical research.

How does a Monte Carlo PSS Simulation Work?

- Four basic steps:
 - Specify probability distributions of the independent and dependent variables (effect size, variation, range, correlations, etc) based on your hypothesized relationship between variables.
 - Simulate datasets (e.g., 1000) with random variation from these specified distributions
 - Perform a statistical test on each simulated dataset.
 - Calculate proportion of your simulated results correctly detected the true relationship between the variables you have simulated. <u>This is your</u> <u>power.</u>

If you're happy with your power from the previous step, you're done. If you're not, change inputs (e.g., N, effect size, distributions) until you achieve sufficient power.

4 components to a power analysis

Yes, but How Do you Actually do this in R?

- The rest of this seminar will be taking place in the R Studio environment. Code and data used is available on dropbox here: <u>https://bit.ly/PSS_simulations_R_2024</u>
- How to perform PSS simulations in R
 - Simulating variables
 - Using loops
 - Looping tests on simulated datasets to calculate power
 - 4 Examples of PSS simulations
 - Simple T-test
 - Correlated covariates
 - Repeated measures
 - Survival
 - Packages that can make things a little easier