Benjamin Sivyer, PhD

  • Associate Professor of Ophthalmology, School of Medicine
  • Casey Eye Institute, School of Medicine

Biography

Our goal is to unravel the mechanisms underlying neuronal dysfunction in the retina in response to axon injury and diseases such as glaucoma. The retina, a complex tissue at the back of the eye, plays an essential role in processing visual information, extending from photoreceptors to retinal ganglion cells, and then to the brain through the optic nerve. Our research focuses on visualizing and recording from neurons to understand how eye diseases like glaucoma disturb normal retinal circuits.

We take an integrative approach, fostering collaborative science to address complex questions at the forefront of ophthalmological research. This involves utilizing large datasets from multielectrode array systems, patch-clamp recordings, high-resolution confocal microscopy, behavior, and transcriptomic analyses. Through these methods, we aim to uncover the principles of visual processing in both health and disease.

Funding

NIH NEI 1R01EY034973       – 2023-28
NIH NEI 1R01EY032564        – 2022-27
NIH NEI 2R01 EY027202      – 2022-26
NIH NEI U24EY033269         – 2021-26
NIH NEI R01 EY030429        – 2020-25

Education and training

  • Degrees

    • Ph.D., 2010, The University of Queensland, Queensland Brain Institute
  • Fellowship

    • NHMRC CJ Martin Biomedical Research Fellowship , 2015

Areas of interest

  • Visual Neuroscience neural circuits
  • Electrophysiology
  • Glaucoma

Publications

Publications

  • Remyelination protects neurons from DLK-mediated neurodegeneration

    Nature communications
    1. Greg J. Duncan
    2. Sam D. Ingram
    3. Katie Emberley
    4. Jo Hill
    5. Christian Cordano
    6. Ahmed Abdelhak
    7. Michael McCane
    8. Jennifer E. Jenks
    9. Nora Jabassini
    10. Kirtana Ananth
    11. Skylar J. Ferrara
    12. Brittany Stedelin
    13. Benjamin Sivyer
    14. Sue A. Aicher
    15. Thomas S. Scanlan
    16. Trent A. Watkins
    17. Anusha Mishra
    18. Jonathan W. Nelson
    19. Ari J. Green
    20. Ben Emery
  • Split Retina as an Improved Flatmount Preparation for Studying Inner Nuclear Layer Neurons in Vertebrate Retina

    Journal of Visualized Experiments
    1. Ryan M. Hecht
    2. Qing Shi
    3. Tavita R. Garrett
    4. Benjamin Sivyer
    5. Catherine Morgans
  • A melanopsin ganglion cell subtype forms a dorsal retinal mosaic projecting to the supraoptic nucleus

    Nature communications
    1. Michael H. Berry
    2. Michael Moldavan
    3. Tavita Garrett
    4. Marc Meadows
    5. Olga Cravetchi
    6. Elizabeth White
    7. Joseph Leffler
    8. Henrique von Gersdorff
    9. Kevin M. Wright
    10. Charles N. Allen
    11. Benjamin Sivyer
  • Gbx2 Identifies Two Amacrine Cell Subtypes with Distinct Molecular, Morphological, and Physiological Properties

    Cell Reports
    1. Patrick C. Kerstein
    2. Joseph Leffler
    3. Benjamin Sivyer
    4. W. Rowland Taylor
    5. Kevin M. Wright
  • Restoration of high-sensitivity and adapting vision with a cone opsin

    Nature communications
    1. Michael H. Berry
    2. Amy Holt
    3. Autoosa Salari
    4. Julia Veit
    5. Meike Visel
    6. Joshua Levitz
    7. Krisha Aghi
    8. Benjamin M. Gaub
    9. Benjamin Sivyer
    10. John G. Flannery
    11. Ehud Y. Isacoff
  • Simulated saccadic stimuli suppress ON-type direction-selective retinal ganglion cells via glycinergic inhibition

    Journal of Neuroscience
    1. Benjamin Sivyer
    2. Alexander Tomlinson
    3. W. Rowland Taylor
  • Shared and distinct retinal input to the mouse superior colliculus and dorsal lateral geniculate nucleus

    Journal of neurophysiology
    1. Erika M. Ellis
    2. Gregory Gauvain
    3. Benjamin Sivyer
    4. Gabe J. Murphy
  • Distinct roles for inhibition in spatial and temporal tuning of local edge detectors in the rabbit retina

    PloS one
    1. Sowmya Venkataramani
    2. Michiel Van Wyk
    3. Ilya Buldyrev
    4. Benjamin Sivyer
    5. David I. Vaney
    6. W. Rowland Taylor
  • Direction selectivity is computed by active dendritic integration in retinal ganglion cells

    Nature Neuroscience
    1. Benjamin Sivyer
    2. Stephen R. Williams
  • A novel type of complex ganglion cell in rabbit retina

    Journal of Comparative Neurology
    1. Benjamin Sivyer
    2. Sowmya Venkataramani
    3. W. Rowland Taylor
    4. David I. Vaney
  • Dendritic morphology and tracer-coupling pattern of physiologically identified transient uniformity detector ganglion cells in rabbit retina

    Visual neuroscience
    1. Benjamin Sivyer
    2. David I. Vaney
  • Synaptic inputs and timing underlying the velocity tuning of direction-selective ganglion cells in rabbit retina

    Journal of Physiology
    1. Benjamin Sivyer
    2. Michiel van Wyk
    3. David I. Vaney
    4. W. Rowland Taylor
  • Two types of ON direction-selective ganglion cells in rabbit retina

    Neuroscience Letters
    1. Refik Kanjhan
    2. Benjamin Sivyer
  • Uniformity detector retinal ganglion cells fire complex spikes and receive only light-evoked inhibition

    Proceedings of the National Academy of Sciences of the United States of America
    1. Benjamin Sivyer
    2. W. Rowland Taylor
    3. David I. Vaney